eanm-logo eanm-logo
European Nuclear Medicine Guide
eanm-logo eanm-logo
European Nuclear Medicine Guide
Chapter 5.6

References

 

1.     Stokkel MPM, Handkiewicz Junak D, Lassmann M, Dietlein M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging 2010;37:2218–28. https://doi.org/10.1007/s00259-010-1536-8.

2.     Silberstein EB, Alavi A, Balon HR, Clarke SEM, Divgi C, Gelfand MJ, et al. The SNMMI Practice Guideline for Therapy of Thyroid Disease with 131I 3.0. Journal of Nuclear Medicine 2012;53:1633–1651. 10.2967/jnumed.112.105148

3.     Marinelli LD, Quimby EH, Hine GJ. Dosage determination with radioactive isotopes; practical considerations in therapy and protection. The American Journal of Roentgenology and Radium Therapy 1948;59:260–81.18905884

4.     Hänscheid H, Canzi C, Eschner W, Flux G, Luster M, Strigari L, et al. EANM Dosimetry Committee Series on Standard Operational Procedures for Pre-Therapeutic Dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases n.d.10.1007/s00259-013-2387-x

5.     Salvatori M, Luster M. Radioiodine therapy dosimetry in benign thyroid disease and differentiated thyroid carcinoma. European Journal of Nuclear Medicine and Molecular Imaging 2010;37:821–828. https://doi.org/10.1007/s00259-010-1398-0.

6.     Dunkelmann S, Neumann V, Staub U, Groth P, Künstner H, Schümichen C. Results of a risk adapted and functional radioiodine therapy in Graves’ disease. Nuklearmedizin Archive 2005;44:238–242. 16400383

7.     Reinhardt MJ, Brink I, Joe AY, von Mallek D, Ezziddin S, Palmedo H, et al. Radioiodine therapy in Graves’ disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome. European Journal of Nuclear Medicine and Molecular Imaging 2002;29:1118–1124. https://doi.org/10.1007/s00259-002-0877-3.

8.     Kobe C, Eschner W, Wild M, Rahlff I, Sudbrock F, Schmidt M, et al. Radioiodine therapy of benign thyroid disorders: what are the effective thyroidal half-life and uptake of 131I? Nuclear Medicine Communications 2010;31:201–205. https://doi.org/10.1097/MNM.0b013e328333d303.

9.     Reinhardt MJ, Biermann K, Wissmeyer M, Juengling FD, Brockmann H, von Mallek D, et al. Dose selection for radioiodine therapy of borderline hyperthyroid patients according to thyroid uptake of 99mTc-pertechnetate: applicability to unifocal thyroid autonomy? European Journal of Nuclear Medicine and Molecular Imaging 2006;33:608–612. https://doi.org/10.1007/s00259-005-0051-9

10.     Dunkelmann S, Endlicher D, Prillwitz A, Rudolph F, Groth P, Schümichen C. Results of TcTUs-optimized radioiodine therapy in multifocal and disseminated autonomy. Nuklearmedizin Nuclear Medicine 1999;38:131–9.10488479

11.     Kahraman D, Keller C, Schneider C, Eschner W, Sudbrock F, Schmidt M, et al. Development of hypothyroidism during long-term follow-up of patients with toxic nodular goitre after radioiodine therapy. Clinical Endocrinology 2012;76:297–303. https://doi.org/10.1111/j.1365-2265.2011.04204.x.

12.     Bachmann J, Kobe C, Bor S, Rahlff I, Dietlein M, Schicha H, et al. Radioiodine therapy for thyroid volume reduction of large goitres. Nuclear Medicine Communications 2009;30:466–471. https://doi.org/10.1097/MNM.0b013e32832b5ccc.

13.     Dewaraja YK, Ljungberg M, Green AJ, Zanzonico PB, Frey EC, SNMMI MIRD Committee SM, et al. MIRD pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2013;54:2182–8. https://doi.org/10.2967/jnumed.113.122390

14.     Strigari L, Sciuto R, Benassi M, Bergomi S, Nocentini S, Maini CL. A NTCP approach for estimating the outcome in radioiodine treatment of hyperthyroidism. Medical Physics 2008;35:3903–3910. https://doi.org/10.1118/1.2964089.

15.     Kobe C, Eschner W, Sudbrock F, Weber I, Marx K, Dietlein M, et al. Graves’ disease and radioiodine therapy. Nuklearmedizin 2008;47:13–17. 18278207

16.     Tuttle RM, Ahuja S, Avram AM, Bernet VJ, Bourguet P, Daniels GH, Dillehay G, Draganescu C, Flux G, Führer D, Giovanella L, Greenspan B, Luster M, Muylle K, Smit JWA, Van Nostrand D, Verburg FA, Hegedüs L. Controversies, Consensus, and Collaboration in the Use of 131I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid. 2019 Apr;29(4):461-470. doi: 10.1089/thy.2018.0597. PMID: 30900516.

17.     Luster M, Clarke SE, Dietlein M, Lassmann M, Lind P, Oyen WJG, et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. European Journal of Nuclear Medicine and Molecular Imaging 2008;35:1941–1959. https://doi.org/10.1007/s00259-008-0883-1.

18.     Grewal RK, Tuttle RM, Fox J, Borkar S, Chou JF, Gonen M, et al. The effect of posttherapy 131I SPECT/CT on risk classification and management of patients with differentiated thyroid cancer. J Nucl Med 2010;51:1361–7. https://doi.org/10.2967/jnumed.110.075960.

19.     Flux GD, Haq M, Chittenden SJ, Buckley S, Hindorf C, Newbold K, et al. A dose-effect correlation for radioiodine ablation in differentiated thyroid cancer. European Journal of Nuclear Medicine and Molecular Imaging 2010;37:270–275. https://doi.org/10.1007/s00259-009-1261-3

20.     Lassmann M, Luster M, Hänscheid H, Reiners C. Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2004;45:619–25.15073258

21.     Maxon HR, Thomas SR, Hertzberg VS, Kereiakes JG, Chen I-W, Sperling MI, et al. Relation between Effective Radiation Dose and Outcome of Radioiodine Therapy for Thyroid Cancer. New England Journal of Medicine 1983;309:937–941. https://doi.org/10.1056/NEJM198310203091601.

22.     Wierts R, Brans B, Havekes B, Kemerink GJ, Halders SG, Schaper NN, et al. Dose-Response Relationship in Differentiated Thyroid Cancer Patients Undergoing Radioiodine Treatment Assessed by Means of 124I PET/CT. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2016;57:1027–32. https://doi.org/10.2967/jnumed.115.168799.

23.     Lassmann M, Hänscheid H, Chiesa C, Hindorf C, Flux G, Luster M. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy 2008. https://doi.org/10.1007/s00259-008-0761-x.

24.     Pacini F, Ladenson PW, Schlumberger M, Driedger A, Luster M, Kloos RT, et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metab 2006;91:926–32. https://doi.org/10.1210/jc.2005-1651

25.     Schlumberger M, Catargi B, Borget I, Deandreis D, Zerdoud S, Bridji B, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med 2012;366:1663–73. https://doi.org/10.1056/NEJMoa1108586

26.     Mallick U, Harmer C, Yap B, Wadsley J, Clarke S, Moss L, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med 2012;366:1674–85. https://doi.org/10.1056/NEJMoa1109589

27.     Wang LY, Palmer FL, Nixon IJ, Thomas D, Patel SG, Shaha AR, et al. Multi-organ distant metastases confer worse disease-specific survival in differentiated thyroid cancer. Thyroid 2014;24:1594–9. https://doi.org/10.1089/thy.2014.0173

28.     Klubo-Gwiezdzinska J, Van Nostrand D, Atkins F, Burman K, Jonklaas J, Mete M, et al. Efficacy of dosimetric versus empiric prescribed activity of 131I for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab 2011;96:3217–25. https://doi.org/10.1210/jc.2011-0494

29.     Deandreis D, Rubino C, Tala H, Leboulleux S, Terroir M, Baudin E, et al. Comparison of Empiric Versus Whole-Body/-Blood Clearance Dosimetry-Based Approach to Radioactive Iodine Treatment in Patients with Metastases from Differentiated Thyroid Cancer. J Nucl Med 2017;58:717–22. https://doi.org/10.2967/jnumed.116.179606.

30.     Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006;91:2892–9. https://doi.org/10.1210/jc.2005-2838.

31.     Chakravarty D, Santos E, Ryder M, Knauf JA, Liao X-H, West BL, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest 2011;121:4700–11. https://doi.org/10.1172/JCI46382

32.     Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 2013;368:623–32. https://doi.org/10.1056/NEJMoa1209288

33.     Dunn LA, Sherman EJ, Baxi SS, Tchekmedyian V, Grewal RK, Larson SM, et al. Vemurafenib Redifferentiation of BRAF Mutant, RAI-Refractory Thyroid Cancers. J Clin Endocrinol Metab 2019;104:1417–28. https://doi.org/10.1210/jc.2018-01478.

34.     Rothenberg SM, Daniels GH, Wirth LJ. Redifferentiation of Iodine-Refractory BRAF V600E-Mutant Metastatic Papillary Thyroid Cancer with Dabrafenib-Response. Clin Cancer Res 2015;21:5640–1. https://doi.org/10.1158/1078-0432.CCR-15-2298

35.     Leboulleux S, Do Cao C, Zerdoud S, Attard M, Bournaud C, Lacroix L, Benisvy D, Taïeb D, Bardet S, Terroir-Cassou-Mounat M, Anizan N, Bouvier-Morel E, Lamartina L, Lion G, Betrian S, Sajous C, Schiazza A, Garcia ME, Ciappuccini R, Schlumberger M, Al Ghuzlan A, Godbert Y, Borget I. A Phase II Redifferentiation Trial with Dabrafenib-Trametinib and 131I in Metastatic Radioactive Iodine Refractory BRAF p.V600E-Mutated Differentiated Thyroid Cancer. Clin Cancer Res. 2023 Jul 5;29(13):2401-2409. doi: 10.1158/1078-0432.CCR-23-0046. PMID: 37074727.

36.     Brown SR, Hall A, Buckley HL, Flanagan L, Gonzalez de Castro D, Farnell K, et al. Investigating the potential clinical benefit of Selumetinib in resensitising advanced iodine refractory differentiated thyroid cancer to radioiodine therapy (SEL-I-METRY): protocol for a multicentre UK single arm phase II trial. BMC Cancer 2019;19:582. https://doi.org/10.1186/s12885-019-5541-4 .

37.     Leboulleux S, Dupuy C, Lacroix L, Attard M, Grimaldi S, Corre R, et al. Redifferentiation of a BRAFK601E-Mutated Poorly Differentiated Thyroid Cancer Patient with Dabrafenib and Trametinib Treatment. Thyroid 2019;29:735–42. https://doi.org/10.1089/thy.2018.0457

38.     Iravani A, Solomon B, Pattison DA, Jackson P, Ravi Kumar A, Kong G, et al. Mitogen-Activated Protein Kinase Pathway Inhibition for Redifferentiation of Radioiodine Refractory Differentiated Thyroid Cancer: An Evolving Protocol. Thyroid 2019;29:1634–45. https://doi.org/10.1089/thy.2019.0143.

39.     Cheng W, Liu R, Zhu G, Wang H, Xing M. Robust Thyroid Gene Expression and Radioiodine Uptake Induced by Simultaneous Suppression of BRAF V600E and Histone Deacetylase in Thyroid Cancer Cells. J Clin Endocrinol Metab 2016;101:962–71. https://doi.org/10.1210/jc.2015-3433

40.     Zhang H, Chen D. Synergistic inhibition of MEK/ERK and BRAF V600E with PD98059 and PLX4032 induces sodium/iodide symporter (NIS) expression and radioiodine uptake in BRAF mutated papillary thyroid cancer cells. Thyroid Res 2018;11. https://doi.org/10.1186/s13044-018-0057-6

41.     Yu X-M, Jaskula-Sztul R, Ahmed K, Harrison AD, Kunnimalaiyaan M, Chen H. Resveratrol induces differentiation markers expression in anaplastic thyroid carcinoma via activation of Notch1 signalling and suppresses cell growth. Mol Cancer Ther 2013;12:1276–87. https://doi.org/10.1158/1535-7163.MCT-12-0841

42.     Fu H, Cheng L, Jin Y, Cheng L, Liu M, Chen L. MAPK Inhibitors Enhance HDAC Inhibitor-Induced Redifferentiation in Papillary Thyroid Cancer Cells Harbouring BRAFV600E: An In Vitro Study. Mol Ther Oncolytics 2019;12:235–45. https://doi.org/10.1016/j.omto.2019.01.007

43.     Song J, Qiu W, Deng X, Qiu Z, Fan Y, Yang Z. A somatic mutation of RasGRP3 decreases Na+/I- symporter expression in metastases of radioactive iodine-refractory thyroid cancer by stimulating the Akt signalling pathway. Am J Cancer Res 2018;8:1847–55. 30323976. 

44.     Alan L. Ho et al. Selumetinib Plus Adjuvant Radioactive Iodine in Patients With High-Risk Differentiated Thyroid Cancer: A Phase III, Randomized, Placebo-Controlled Trial (ASTRA). JCO 40, 1870-1878(2022).DOI:10.1200/JCO.21.00714

45.     Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1–133. https://doi.org/10.1089/thy.2015.0020

46.     Jaber T, Waguespack SG, Cabanillas ME, Elbanan M, Vu T, Dadu R, et al. Targeted Therapy in Advanced Thyroid Cancer to Resensitize Tumours to Radioactive Iodine. J Clin Endocrinol Metab 2018;103:3698–705. https://doi.org/10.1210/jc.2018-00612