eanm-logo eanm-logo
European Nuclear Medicine Guide
eanm-logo eanm-logo
European Nuclear Medicine Guide
Chapter 10.16

References

 

1.     Mattsson S, Johansson L, Leide Svegborn S, Liniecki J, Noßke D, Riklund KÅ, et al. ICRP Publication 128: Radiation Dose to Patients from Radiopharmaceuticals: a Compendium of Current Information Related to Frequently Used Substances. Ann ICRP 2015;44:7–321. https://doi.org/10.1177/0146645314558019.

2.     Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. European Journal of Nuclear Medicine and Molecular Imaging 2015;42:328–54. https://doi.org/10.1007/s00259-014-2961-x.

3.     The Royal College Of Radiologists, Royal College Of Physicians Of London, Royal College Of Physicians And Surgeons Of Glasgow, Royal College Of Physicians Of Edinburgh, British Nuclear Medicine Society, Administration Of Radioactive Substances Advisory Committee. Evidence-based indications for the use of PET-CT in the United Kingdom 2016. Clin Radiol 2016;71:e171-188. https://doi.org/10.1016/j.crad.2016.05.001.

4.     Podo F. Tumour phospholipid metabolism. NMR in Biomedicine 1999;12:413–39.PMID: 10654290

5.     Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 1998;39:990–5.PMID: 9627331

6.      Evangelista L, Briganti A, Fanti S, Joniau S, Reske S, Schiavina R, et al. New Clinical Indications for 18 F/ 11 C-choline, New Tracers for Positron Emission Tomography and a Promising Hybrid Device for Prostate Cancer Staging: A Systematic Review of the Literature. European Urology 2016;70:161–175. https://doi.org/10.1016/j.eururo.2016.01.029

7.     Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology 2010;254:925–33. https://doi.org/10.1148/radiol.09090413

8.     Graziani T, Ceci F, Castellucci P, Polverari G, Lima GM, Lodi F, et al. 11C-Choline PET/CT for restaging prostate cancer. Results from 4,426 scans in a single-centre patient series. Eur J Nucl Med Mol Imaging 2016;43:1971–9. https://doi.org/10.1007/s00259-016-3428-z

9.     Picchio M, Briganti A, Fanti S, Heidenreich A, Krause BJ, Messa C, et al. The Role of Choline Positron Emission Tomography/Computed Tomography in the Management of Patients with Prostate-Specific Antigen Progression After Radical Treatment of Prostate Cancer. European Urology 2011;59:51–60. https://doi.org/10.1016/j.eururo.2010.09.004

10.     Picchio M, Berardi G, Fodor A, Busnardo E, Crivellaro C, Giovacchini G, et al. 11C-Choline PET/CT as a guide to radiation treatment planning of lymph-node relapses in prostate cancer patients. European Journal of Nuclear Medicine and Molecular Imaging 2014;41:1270–9. https://doi.org/10.1007/s00259-014-2734-6

11.     Giovacchini G, Picchio M, Coradeschi E, Scattoni V, Bettinardi V, Cozzarini C, et al. [11C]Choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. European Journal of Nuclear Medicine and Molecular Imaging 2008;35:1065–1073. https://doi.org/10.1007/s00259-008-0716-2

12.     Tuncel M, Souvatzoglou M, Herrmann K, Stollfuss J, Schuster T, Weirich G, et al. [11C]Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer. Nuclear Medicine and Biology 2008;35:689–695. https://doi.org/10.1016/j.nucmedbio.2008.05.006.

13.     Castilla-Lièvre M-A, Franco D, Gervais P, Kuhnast B, Agostini H, Marthey L, et al. Diagnostic value of combining 11C-choline and 18F-FDG PET/CT in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2016;43:852–9. https://doi.org/10.1007/s00259-015-3241-0

14.     Lanza E, Donadon M, Felisaz P, Mimmo A, Chiti A, Torzilli G, et al. Refining the management of patients with hepatocellular carcinoma integrating 11C-choline PET/CT scan into the multidisciplinary team discussion. Nucl Med Commun 2017;38:826–36. https://doi.org/10.1097/MNM.0000000000000719

15.     Calabria FF, Barbarisi M, Gangemi V, Grillea G, Cascini GL. Molecular imaging of brain tumors with radiolabeled choline PET. Neurosurg Rev 2018;41:67–76. https://doi.org/10.1007/s10143-016-0756-1

16.     Fodor A, Berardi G, Fiorino C, Picchio M, Busnardo E, Kirienko M, et al. Toxicity and efficacy of salvage carbon 11-choline positron emission tomography/computed tomography-guided radiation therapy in patients with lymph node recurrence of prostate cancer. BJU Int 2017;119:406–13. https://doi.org/10.1111/bju.13510

17.     Giovacchini G, Incerti E, Mapelli P, Kirienko M, Briganti A, Gandaglia G, et al. [11C]Choline PET/CT predicts survival in hormone-naive prostate cancer patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 2015;42:877–84. https://doi.org/10.1007/s00259-015-3015-8

18.     Giovacchini G, Guglielmo P, Mapelli P, Incerti E, Gajate AMS, Giovannini E, et al. 11C-choline PET/CT predicts survival in prostate cancer patients with PSA < 1 NG/ml. Eur J Nucl Med Mol Imaging 2019;46:921–9. https://doi.org/10.1007/s00259-018-4253-3

19.     Tolvanen T, Yli-Kerttula T, Ujula T, Autio A, Lehikoinen P, Minn H, et al. Biodistribution and radiation dosimetry of [11C]choline: a comparison between rat and human data. European Journal of Nuclear Medicine and Molecular Imaging 2010;37:874–883. https://doi.org/10.1007/s00259-009-1346-z.

20.     Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, et al. 68Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging 2017;44:1014–24. https://doi.org/10.1007/s00259-017-3670-z

21.     Mottet, N, van den Bergh, R, Briers, E. EAU-ESTRO-SIOG guidelines on prostate cancer. EAU Guidelines. Edn.In: presented at the EAU Annual Congress, Barcelona: 2019.

22.     Hofman MS, Lawrentschuk N, Francis RJ, Tang C, Vela I, Thomas P, et al.  Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 2020;395:1208–16. https://doi.org/10.1016/S0140-6736(20)30314-7

23.     Kratochwil C, Fendler WP, Eiber M, Baum R, Bozkurt MF, Czernin J, et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging 2019;46:2536–44. https://doi.org/10.1007/s00259-019-04485-3

24.     198]   Fendler WP, Ferdinandus J, Czernin J, Eiber M, Flavell RR, Behr SC, et al. Impact of 68Ga-PSMA-11 PET on the Management of recurrent Prostate Cancer in a Prospective Single-Arm Clinical Trial. J Nucl Med 2020. https://doi.org/10.2967/jnumed.120.242180

25.     Calais J, Czernin J, Cao M, Kishan AU, Hegde JV, Shaverdian N, et al. 68Ga-PSMA-11 PET/CT Mapping of Prostate Cancer Biochemical Recurrence After Radical Prostatectomy in 270 Patients with a PSA Level of Less Than 1.0 ng/mL: Impact on Salvage Radiotherapy Planning. J Nucl Med 2018;59:230–7. https://doi.org/10.2967/jnumed.117.201749

26.     Emmett L, Tang R, Nandurkar R, Hruby G, Roach P, Watts JA, et al. 3-Year Freedom from Progression After 68Ga-PSMA PET/CT-Triaged Management in Men with Biochemical Recurrence After Radical Prostatectomy: Results of a Prospective Multicenter Trial. J Nucl Med 2020;61:866–72. https://doi.org/10.2967/jnumed.119.235028

27.     Ceci F, Bianchi L, Borghesi M, Polverari G, Farolfi A, Briganti A, et al. Prediction nomogram for 68Ga-PSMA-11 PET/CT in different clinical settings of PSA failure after radical treatment for prostate cancer. Eur J Nucl Med Mol Imaging 2020;47:136–46. https://doi.org/10.1007/s00259-019-04505-2

28.     Rauscher I, Düwel C, Haller B, Rischpler C, Heck MM, Gschwend JE, et al. Efficacy, Predictive Factors, and Prediction Nomograms for 68Ga-labeled Prostate-specific Membrane Antigen-ligand Positron-emission Tomography/Computed Tomography in Early Biochemical Recurrent Prostate Cancer After Radical Prostatectomy. Eur Urol 2018;73:656–61. https://doi.org/10.1016/j.eururo.2018.01.006

29.     Fendler WP, Weber M, Iravani A, Hofman MS, Calais J, Czernin J, et al. Prostate-Specific Membrane Antigen Ligand Positron Emission Tomography in Men with Nonmetastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2019;25:7448–54. https://doi.org/10.1158/1078-0432.CCR-19-1050

30.     Eiber M, Herrmann K, Calais J, Hadaschik B, Giesel FL, Hartenbach M, et al. Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE): Proposed miTNM Classification for the Interpretation of PSMA-Ligand PET/CT. J Nucl Med 2018;59:469–78. https://doi.org/10.2967/jnumed.117.198119

31.     Rowe SP, Pienta KJ, Pomper MG, Gorin MA. PSMA-RADS Version 1.0: A Step Towards Standardizing the Interpretation and Reporting of PSMA-targeted PET Imaging Studies. Eur Urol 2018;73:485–7. https://doi.org/10.1016/j.eururo.2017.10.027

32.     Fanti S, Minozzi S, Morigi JJ, Giesel F, Ceci F, Uprimny C, et al. Development of standardized image interpretation for 68Ga-PSMA PET/CT to detect prostate cancer recurrent lesions. Eur J Nucl Med Mol Imaging 2017;44:1622–35. https://doi.org/10.1007/s00259-017-3725-1

33.     Toriihara A, Nobashi T, Baratto L, Duan H, Moradi F, Park S, et al. Comparison of 3 Interpretation Criteria for 68Ga-PSMA11 PET Based on Inter- and Intrareader Agreement. J Nucl Med 2020;61:533–9. https://doi.org/10.2967/jnumed.119.232504

34.      Fanti S, Hadaschik B, Herrmann K. Proposal for Systemic-Therapy Response-Assessment Criteria at the Time of PSMA PET/CT Imaging: The PSMA PET Progression Criteria. J Nucl Med 2020;61:678–82. https://doi.org/10.2967/jnumed.119.233817

35.     Sheikhbahaei S, Werner RA, Solnes LB, Pienta KJ, Pomper MG, Gorin MA, et al. Prostate-Specific Membrane Antigen (PSMA)-Targeted PET Imaging of Prostate Cancer: An Update on Important Pitfalls. Semin Nucl Med 2019;49:255–70. https://doi.org/10.1053/j.semnuclmed.2019.02.006.

36.     O’Keefe DS, Bacich DJ, Huang SS, Heston WDW. A Perspective on the Evolving Story of PSMA Biology, PSMA-Based Imaging, and Endoradiotherapeutic Strategies. J Nucl Med 2018;59:1007–13. https://doi.org/10.2967/jnumed.117.203877

37.     Gordon IO, Tretiakova MS, Noffsinger AE, Hart J, Reuter VE, Al-Ahmadie HA. Prostate-specific membrane antigen expression in regeneration and repair. Mod Pathol 2008;21:1421–7. https://doi.org/10.1038/modpathol.2008.143

38.     Kaittanis C, Andreou C, Hieronymus H, Mao N, Foss CA, Eiber M, et al. Prostate-specific membrane antigen cleavage of vitamin B9 stimulates oncogenic signaling through metabotropic glutamate receptors. J Exp Med 2018;215:159–75. https://doi.org/10.1084/jem.20171052

39.     Wu LY, Anderson MO, Toriyabe Y, Maung J, Campbell TY, Tajon C, et al. The molecular pruning of a phosphoramidate peptidomimetic inhibitor of prostate-specific membrane antigen. Bioorg Med Chem 2007;15:7434–43. https://doi.org/10.1016/j.bmc.2007.07.028

40.     Rowe SP, Gage KL, Faraj SF, Macura KJ, Cornish TC, Gonzalez-Roibon N, et al. 18F-DCFBC PET/CT for PSMA-Based Detection and Characterization of Primary Prostate Cancer. J Nucl Med 2015;56:1003–10. https://doi.org/10.2967/jnumed.115.154336

41.     Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, et al. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 2011;17:7645–53. https://doi.org/10.1158/1078-0432.CCR-11-1357

42.     Rahbar K, Afshar-Oromieh A, Seifert R, Wagner S, Schäfers M, Bögemann M, et al. Diagnostic performance of 18F-PSMA-1007 PET/CT in patients with biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2018;45:2055–61. https://doi.org/10.1007/s00259-018-4089-x

43.     Di Carli MF, Hachamovitch R. New Technology for Noninvasive Evaluation of Coronary Artery Disease. Circulation 2007;115:1464–1480. https://doi.org/10.1161/CIRCULATIONAHA.106.629808

44.     Wurzer A, Di Carlo D, Schmidt A, Beck R, Eiber M, Schwaiger M, et al. Radiohybrid Ligands: A Novel Tracer Concept Exemplified by 18F- or 68Ga-Labeled rhPSMA Inhibitors. J Nucl Med 2020;61:735–42. https://doi.org/10.2967/jnumed.119.234922

45.     Dietlein F, Hohberg M, Kobe C, Zlatopolskiy BD, Krapf P, Endepols H, et al. An 18F-Labeled PSMA Ligand for PET/CT of Prostate Cancer: First-in-Humans Observational Study and Clinical Experience with 18F-JK-PSMA-7 During the First Year of Application. J Nucl Med 2020;61:202–9. https://doi.org/10.2967/jnumed.119.229542

46.     Mottet N, Cornford P, van den Bergh, R, Briers, E, De Santis, M, Fanti, S, et al. EAU guidelines. Edn. Presented at the Annual Congress, Amsterdam: 2020.  10.1016/j.eururo.2020.09.042

47.     Verberne, H, Hesse, B. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT 2015. https://eanm.org/publications/guidelines/2015_07_EANM_FINAL_myocardial_perfusion_guideline.pdf (accessed July 12, 2020).

48.     Wondergem M, Jansen BHE, van der Zant FM, van der Sluis TM, Knol RJJ, van Kalmthout LWM, et al. Early lesion detection with 18F-DCFPyL PET/CT in 248 patients with biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2019;46:1911–8. https://doi.org/10.1007/s00259-019-04385-6

49.     Rowe S, Gorin M, Pienta K, Siegel B, Carroll P, Pouliot F, et al. Results from the OSPREY trial: A PrOspective Phase 2/3 Multi-Center Study of 18F-DCFPyL PET/CT Imaging in Patients with PRostate Cancer - Examination of Diagnostic AccuracY. J Nucl Med 2019;60:586–586. 10.1097/JU.0000000000001698 

50.     Giesel FL, Will L, Lawal I, Lengana T, Kratochwil C, Vorster M, et al. Intraindividual Comparison of 18F-PSMA-1007 and 18F-DCFPyL PET/CT in the Prospective Evaluation of Patients with Newly Diagnosed Prostate Carcinoma: A Pilot Study. J Nucl Med 2018;59:1076–80. https://doi.org/10.2967/jnumed.117.204669

51.     Giesel FL, Knorr K, Spohn F, Will L, Maurer T, Flechsig P, et al. Detection Efficacy of 18F-PSMA-1007 PET/CT in 251 Patients with Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. J Nucl Med 2019;60:362–8. https://doi.org/10.2967/jnumed.118.212233

52.     Eiber M, Kroenke M, Wurzer A, Ulbrich L, Jooß L, Maurer T, et al. 18F-rhPSMA-7 PET for the Detection of Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. J Nucl Med 2020;61:696–701. https://doi.org/10.2967/jnumed.119.234914

53.     Plyku D, Mena E, Rowe SP, Lodge MA, Szabo Z, Cho SY, et al. Combined model-based and patient-specific dosimetry for 18F-DCFPyL, a PSMA-targeted PET agent. Eur J Nucl Med Mol Imaging 2018;45:989–98. https://doi.org/10.1007/s00259-018-3939-x

54.     Hohberg M, Kobe C, Krapf P, Täger P, Hammes J, Dietlein F, et al. Biodistribution and radiation dosimetry of [18F]-JK-PSMA-7 as a novel prostate-specific membrane antigen-specific ligand for PET/CT imaging of prostate cancer. EJNMMI Res 2019;9:66. https://doi.org/10.1186/s13550-019-0540-7

55.     Sheikhbahaei S, Afshar-Oromieh A, Eiber M, Solnes LB, Javadi MS, Ross AE, et al. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging. Eur J Nucl Med Mol Imaging 2017;44:2117–36. https://doi.org/10.1007/s00259-017-3780-7

56.     Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY, et al. Assessment of 68Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer: A Prospective Single-Arm Clinical Trial. JAMA Oncol 2019;5:856–63. https://doi.org/10.1001/jamaoncol.2019.0096

57.     Rauscher I, Krönke M, König M, Gafita A, Maurer T, Horn T, et al. Matched-Pair Comparison of 68Ga-PSMA-11 PET/CT and 18F-PSMA-1007 PET/CT: Frequency of Pitfalls and Detection Efficacy in Biochemical Recurrence After Radical Prostatectomy. J Nucl Med 2020;61:51–7. https://doi.org/10.2967/jnumed.119.229187

58.     Benešová M, Schäfer M, Bauder-Wüst U, Afshar-Oromieh A, Kratochwil C, Mier W, et al. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J Nucl Med 2015;56:914–20. https://doi.org/10.2967/jnumed.114.147413.

59.     Ghosh SC, Pinkston KL, Robinson H, Harvey BR, Wilganowski N, Gore K, et al. Comparison of DOTA and NODAGA as chelators for (64)Cu-labeled immunoconjugates. Nucl Med Biol 2015;42:177–83. https://doi.org/10.1016/j.nucmedbio.2014.09.009

60.     Cantiello F, Crocerossa F, Russo GI, Gangemi V, Ferro M, Vartolomei MD, et al. Comparison Between 64Cu-PSMA-617 PET/CT and 18F-Choline PET/CT Imaging in Early Diagnosis of Prostate Cancer Biochemical Recurrence. Clin Genitourin Cancer 2018;16:385–91. https://doi.org/10.1016/j.clgc.2018.05.014

61.     Sevcenco S, Klingler HC, Eredics K, Friedl A, Schneeweiss J, Knoll P, et al. Application of Cu-64 NODAGA-PSMA PET in Prostate Cancer. Adv Ther 2018;35:779–84. https://doi.org/10.1007/s12325-018-0711-3.

62.      Hoberück S, Wunderlich G, Michler E, Hölscher T, Walther M, Seppelt D, et al. Dual-time-point 64 Cu-PSMA-617-PET/CT in patients suffering from prostate cancer. J Labelled Comp Radiopharm 2019;62:523–32. https://doi.org/10.1002/jlcr.3745

63.      Okudaira H, Shikano N, Nishii R, Miyagi T, Yoshimoto M, Kobayashi M, et al. Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid in human prostate cancer. J Nucl Med 2011;52:822–9. https://doi.org/10.2967/jnumed.110.086074.

64.     Oka S, Okudaira H, Yoshida Y, Schuster DM, Goodman MM, Shirakami Y. Transport mechanisms of trans-1-amino-3-fluoro[1-(14)C]cyclobutanecarboxylic acid in prostate cancer cells. Nucl Med Biol 2012;39:109–19. https://doi.org/10.1016/j.nucmedbio.2011.06.008.

65.     Sun A, Liu X, Tang G. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors. Front Chem 2018;5. https://doi.org/10.3389/fchem.2017.00124.

66.     Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 2005;15:254–66. https://doi.org/10.1016/j.semcancer.2005.04.005.

67.     Xu M, Sakamoto S, Matsushima J, Kimura T, Ueda T, Mizokami A, et al. Up-Regulation of LAT1 during Antiandrogen Therapy Contributes to Progression in Prostate Cancer Cells. J Urol 2016;195:1588–97. https://doi.org/10.1016/j.juro.2015.11.071.

68.     Okudaira H, Oka S, Ono M, Nakanishi T, Schuster DM, Kobayashi M, et al. Accumulation of Trans-1-Amino-3-[18F]Fluorocyclobutanecarboxylic Acid in Prostate Cancer due to Androgen-Induced Expression of Amino Acid Transporters. Mol Imaging Biol 2014;16:756–64. https://doi.org/10.1007/s11307-014-0756-x.

69.     Ono M, Oka S, Okudaira H, Nakanishi T, Mizokami A, Kobayashi M, et al. [(14)C]Fluciclovine (alias anti-[(14)C]FACBC) uptake and ASCT2 expression in castration-resistant prostate cancer cells. Nucl Med Biol 2015;42:887–92. https://doi.org/10.1016/j.nucmedbio.2015.07.005.

70.     Akin-Akintayo OO, Jani AB, Odewole O, Tade FI, Nieh PT, Master VA, et al. Change in Salvage Radiotherapy Management Based on Guidance With FACBC (Fluciclovine) PET/CT in Postprostatectomy Recurrent Prostate Cancer. Clinical Nuclear Medicine 2017;42:e22. https://doi.org/10.1097/RLU.0000000000001379.

71.     Kairemo K, Rasulova N, Partanen K, Joensuu T. Preliminary clinical experience of trans-1-Amino-3-(18)F-fluorocyclobutanecarboxylic Acid (anti-(18)F-FACBC) PET/CT imaging in prostate cancer patients. Biomed Res Int 2014;2014:305182. https://doi.org/10.1155/2014/305182.

72.     Bach-Gansmo T, Nanni C, Nieh PT, Zanoni L, Bogsrud TV, Sletten H, et al. Multisite Experience of the Safety, Detection Rate and Diagnostic Performance of Fluciclovine (18F) Positron Emission Tomography/Computerized Tomography Imaging in the Staging of Biochemically Recurrent Prostate Cancer. J Urol 2017;197:676–83. https://doi.org/10.1016/j.juro.2016.09.117.

73.     Schuster DM, Nieh PT, Jani AB, Amzat R, Bowman FD, Halkar RK, et al. Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. J Urol 2014;191:1446–53. https://doi.org/10.1016/j.juro.2013.10.065.

74.     Oka S, Kanagawa M, Doi Y, Schuster DM, Goodman MM, Yoshimura H. PET Tracer 18F-Fluciclovine Can Detect Histologically Proven Bone Metastatic Lesions: A Preclinical Study in Rat Osteolytic and Osteoblastic Bone Metastasis Models. Theranostics 2017;7:2048–64. https://doi.org/10.7150/thno.19883.

75.     Chau A, Gardiner P, Colletti PM, Jadvar H. Diagnostic Performance of 18F-Fluciclovine in Detection of Prostate Cancer Bone Metastases. Clin Nucl Med 2018;43:e226–31. https://doi.org/10.1097/RLU.0000000000002130.

76.     Andriole GL, Kostakoglu L, Chau A, Duan F, Mahmood U, Mankoff DA, et al. The Impact of Positron Emission Tomography with 18F-Fluciclovine on the Treatment of Biochemical Recurrence of Prostate Cancer: Results from the LOCATE Trial. J Urol 2019;201:322–31. https://doi.org/10.1016/j.juro.2018.08.050.

77.     Nanni C, Zanoni L, Bach-Gansmo T, Minn H, Willoch F, Bogsrud TV, et al. [18F]Fluciclovine PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging-version 1.0. Eur J Nucl Med Mol Imaging 2020;47:579–91. https://doi.org/10.1007/s00259-019-04614-y.

78.     McParland BJ, Wall A, Johansson S, Sørensen J. The clinical safety, biodistribution and internal radiation dosimetry of [18F]fluciclovine in healthy adult volunteers. Eur J Nucl Med Mol Imaging 2013;40:1256–64. https://doi.org/10.1007/s00259-013-2403-1.

79.     Nye JA, Schuster DM, Yu W, Camp VM, Goodman MM, Votaw JR. Biodistribution and radiation dosimetry of the synthetic nonmetabolized amino acid analogue anti-18F-FACBC in humans. J Nucl Med 2007;48:1017–20. https://doi.org/10.2967/jnumed.107.040097.

80.     [18F]Fluciclovine PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging-version 1.0. Eur J Nucl Med Mol Imaging 2020;47:579–91. https://doi.org/10.1007/s00259-019-04614-y.

81.     Schuster DM, Taleghani PA, Nieh PT, Master VA, Amzat R, Savir-Baruch B, et al. Characterization of primary prostate carcinoma by anti-1-amino-2-[(18)F] -fluorocyclobutane-1-carboxylic acid (anti-3-[(18)F] FACBC) uptake. Am J Nucl Med Mol Imaging 2013;3:85–96.

82.     Turkbey B, Mena E, Shih J, Pinto PA, Merino MJ, Lindenberg ML, et al. Localized prostate cancer detection with 18F FACBC PET/CT: comparison with MR imaging and histopathologic analysis. Radiology 2014;270:849–56. https://doi.org/10.1148/radiol.13130240.

83.     Shoup TM, Olson J, Hoffman JM, Votaw J, Eshima D, Eshima L, et al. Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med 1999;40:331–8.

84.     Schuster DM, Votaw JR, Nieh PT, Yu W, Nye JA, Master V, et al. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 2007;48:56–63.

85.     Schuster DM, Nanni C, Fanti S, Oka S, Okudaira H, Inoue Y, et al. Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med 2014;55:1986–92. https://doi.org/10.2967/jnumed.114.143628.

86.     Ulaner GA, Schuster DM. Amino Acid Metabolism as a Target for Breast Cancer Imaging. PET Clin 2018;13:437–44. https://doi.org/10.1016/j.cpet.2018.02.009.

87.     Parent EE, Benayoun M, Ibeanu I, Olson JJ, Hadjipanayis CG, Brat DJ, et al. [18F]Fluciclovine PET discrimination between high- and low-grade gliomas. EJNMMI Research 2018;8:67. https://doi.org/10.1186/s13550-018-0415-3.

88.     Sannananja B, Shah HU, Behnia F. 18F-Fluciclovine Uptake by an Incidentally Detected Hepatocellular Carcinoma in a Case of Biochemically Recurrent Prostate Cancer. Clin Nucl Med 2018;43:695–6. https://doi.org/10.1097/RLU.0000000000002176.

89.     Amzat R, Taleghani P, Miller DL, Beitler JJ, Bellamy LM, Nye JA, et al. Pilot study of the utility of the synthetic PET amino-acid radiotracer anti-1-amino-3-[(18)F]fluorocyclobutane-1-carboxylic acid for the noninvasive imaging of pulmonary lesions. Mol Imaging Biol 2013;15:633–43. https://doi.org/10.1007/s11307-012-0606-7.

90.     Schuster DM, Nye JA, Nieh PT, Votaw JR, Halkar RK, Issa MM, et al. Initial experience with the radiotracer anti-1-amino-3-[18F]Fluorocyclobutane-1-carboxylic acid (anti-[ 18F]FACBC) with PET in renal carcinoma. Mol Imaging Biol 2009;11:434–8. https://doi.org/10.1007/s11307-009-0220-5.

91.     Castello A, Albano D, Muoio B, Castellani M, Panareo S, Rizzo A, Treglia G, Urso L. Diagnostic Accuracy of PET with 18F-Fluciclovine ([18F]FACBC) in Detecting High-Grade Gliomas: A Systematic Review and Meta-Analysis. Diagnostics (Basel). 2023 Dec 6;13(24):3610. doi: 10.3390/diagnostics13243610. PMID: 38132194; PMCID: PMC10742552.

92.     Wakabayashi T, Iuchi T, Tsuyuguchi N, Nishikawa R, Arakawa Y, Sasayama T, Miyake K, Nariai T, Narita Y, Hashimoto N, Okuda O, Matsuda H, Kubota K, Ito K, Nakazato Y, Kubomura K. Diagnostic Performance and Safety of Positron Emission Tomography Using 18F-Fluciclovine in Patients with Clinically Suspected High- or Low-grade Gliomas: A Multicenter Phase IIb Trial. Asia Ocean J Nucl Med Biol. 2017 Winter;5(1):10-21. doi: 10.22038/aojnmb.2016.7869. PMID: 28840134; PMCID: PMC5221680.

93.     Karlberg, A., Pedersen, L.K., Vindstad, B.E. et al. Diagnostic accuracy of anti-3-[18F]-FACBC PET/MRI in gliomas. Eur J Nucl Med Mol Imaging 51, 496–509 (2024). https://doi.org/10.1007/s00259-023-06437-4

94.     Kondo, A., Ishii, H., Aoki, S. et al. Phase IIa clinical study of [18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Ann Nucl Med 30, 608–618 (2016). https://doi.org/10.1007/s12149-016-1102-y

95.     Wakabayashi, T., Hirose, Y., Miyake, K. et al. Determining the extent of tumor resection at surgical planning with 18F-fluciclovine PET/CT in patients with suspected glioma: multicenter phase III trials. Ann Nucl Med 35, 1279–1292 (2021). https://doi.org/10.1007/s12149-021-01670-z

96.     Reubi JC, Waser B, Schaer JC, Laissue JA. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med. 2001 Jul;28(7):836-46. doi: 10.1007/s002590100541. Erratum in: Eur J Nucl Med 2001 Sep;28(9):1433. PMID: 11504080.

97.     de Wilde RF, Edil BH, Hruban RH, Maitra A. Well-differentiated pancreatic neuroendocrine tumors: from genetics to therapy. Nat Rev Gastroenterol Hepatol. 2012 Feb 7;9(4):199-208. doi: 10.1038/nrgastro.2012.9.

98.     Kwekkeboom DJ,  Krenning EP. Somatostatin receptor imaging Semin Nucl Med 2002 Apr;32(2):84-91. PMID: 11965603. doi: 10.1053/snuc.2002.31022.

99.     Mansi L. From the magic bullet to an effective therapy: the peptide experience. Eur J Nucl Med Mol Imaging. 2004 Oct;31(10):1393-8. doi: 10.1007/s00259-004-1661-3. Epub 2004 Sep 4. PMID: 15351914

100.     Di Stasio GD, Buonomano P, Travaini LL, Grana CM, Mansi L. From the Magic Bullet to Theragnostics: Certitudes and Hypotheses, Trying to Optimize the Somatostatin model. Cancers (Basel). 2021 Jul12;13(14): 3474.doi:10.3390/cancers3143474. PMID: 34298688

101.     Carollo A, Papi S, Grana CM, Mansi L, Chinol M. State of the Art and Recent Developments of Radiopharmaceuticals for Pancreatic Neuroendocrine Tumors Imaging. Curr Radiopharm. 2019;12(2):107-125. doi: 10.2174/1874471012666190306104450.PMID: 30843499 Review.

102.     Diagnostic imaging in neuroendocrine tumors. Mansi L, Cuccurullo V. J Nucl Med. 2014 Oct;55(10):1576-7. doi: 10.2967/jnumed.114.147082. Epub 2014 Sep 18.PMID: 25236352 Free article. No abstract available.

103.     Mansi L, Rambaldi PF, Bizzarro A, Panza N, Di Martino S, De Bellis A, Del Vecchio E.Indium-111 octreotide in Graves' disease and in the evaluation of active exophthalmos. Q J Nucl Med. 1995 Jun;39(2):105-10.PMID: 8574802

104.     Mansi L, Rambaldi PF, Bizzarro A, Panza N, Del Vecchio E.111In-octreotide in the evaluation of autoimmune thyroid diseases. Q J Nucl Med. 1995 Dec;39(4 Suppl 1):127-30.PMID: 9002770

105.     Anzola-Fuentes LK, Chianelli M, Galli F, Glaudemans AW, Martin Martin L, Todino V, Migliore A, Signore A. Somatostatin receptor scintigraphy in patients with rheumatoid arthritis and secondary Sjögren's syndrome treated with Infliximab: a pilot study. EJNMMI Res. 2016 Dec;6(1):49. doi: 10.1186/s13550-016-0202-y.

106.     Helgebostad R, Revheim ME, Johnsrud K, Amlie K, Alavi A, Connelly JP. Clinical Applications of Somatostatin Receptor (Agonist) PET Tracers beyond Neuroendocrine Tumors. Diagnostics (Basel). 2022 Feb 18;12(2):528. doi: 10.3390/diagnostics12020528.

107.     Cascini GL, Cuccurullo V, Tamburrini O, Rotondo A, Mansi L. Peptide imaging with somatostatin analogues: more than cancer probes. Curr Radiopharm. 2013 Mar; 6(1):36-40. doi: 10.2174/1874471011306010006.PMID: 23470033 Review.

108.     Rufini V, Baum RP, Castaldi P, Treglia G, De Gaetano AM, Carreras C, Kaemmerer D, Hommann M, Hörsch D, Bonomo L, Giordano A. Role of PET/CT in the functional imaging of endocrine pancreatic tumors. Abdom Imaging. 2012 Dec;37(6):1004-20. doi: 10.1007/s00261-012-9871-9.

109.     Panza N, Rambaldi PF, Battista C, Ambrosio G, Cascini GL, Schillirò F, Mansi L Receptor imaging with 111In-pentreotide and 123I-methoxybenzamide, and inhibition tests with octreotide and bromocriptine of mixed growth hormone/prolactin-secreting pituitary tumors..Biomed Pharmacother. 1999 Aug;53(7):319-22. doi: 10.1016/S0753-3322(00)88504-2.PMID: 10472432

110.     Pastore V, Di Lieto E, Mansi L, Rambaldi PF, Santini M, Mancusi R. Intraoperative detection of lung cancer by octreotide labeled to Indium-111. Semin Surg Oncol. 1998 Dec;15(4):220-2. doi: 10.1002/(sici)1098-2388(199812)15:4<220::aid-ssu6>3.0.co;2-t.PMID: 9829375 Clinical Trial.

111.     Mansi L, Rambaldi PF, Panza N, Esposito D, Esposito V, Pastore V Diagnosis and radioguided surgery with 111In-pentetreotide in a patient with paraneoplastic Cushing's syndrome due to a bronchial carcinoid. Eur J Endocrinol. 1997 Dec;137(6):688-90. doi: 10.1530/eje.0.1370688.PMID: 9437238

112.     Cuccurullo V, Di Stasio GD, Mansi L. Radioguided surgery with radiolabeled somatostatin analogs: not only in GEP-NETs. Nucl Med Rev Cent East Eur. 2017;20(1):49-56. doi: 10.5603/NMR.2017.0003.

113.     Mattsson S, Johansson L, Leide Svegborn S, Liniecki J, Noßke D, Riklund KÅ, et al. ICRP Publication 128: Radiation Dose to Patients from Radiopharmaceuticals: a Compendium of Current Information Related to Frequently Used Substances. Ann ICRP 2015;44:7–321. https://doi.org/10.1177/0146645314558019

114.     Van Binnebeek S, Vanbilloen B, Baete K, Terwinghe C, Koole M, Mottaghy FM, Clement PM, Mortelmans L, Bogaerts K, Haustermans K, Nackaerts K, Van Cutsem E, Verslype C, Verbruggen A, Deroose CM. Comparison of diagnostic accuracy of (111)In-pentetreotide SPECT and (68)Ga-DOTATOC PET/CT: A lesion-by-lesion analysis in patients with metastatic neuroendocrine tumours. Eur Radiol. 2016 Mar;26(3):900-9. doi: 10.1007/s00330-015-3882-1.

115.     Apostolova I, Riethdorf S, Buchert R, Derlin T, Brenner W, Mester J, Klutmann S. SPECT/CT stabilizes the interpretation of somatostatin receptor scintigraphy findings: a retrospective analysis of inter-rater agreement. Ann Nucl Med. 2010 Jul;24(6):477-83. doi: 10.1007/s12149-010-0383-9.

116.     E P Krenning 1, D J Kwekkeboom, W H Bakker, W A Breeman, P P Kooij, H Y Oei, M van Hagen, P T Postema, M de Jong, J C Reubi, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients Eur J Nucl Med 1993 Aug;20(8):716-31. doi: 10.1007/BF00181765

117.     de Jong M, Breeman WA, Kwekkeboom DJ, Valkema R, Krenning EP. Tumor imaging and therapy using radiolabeled somatostatin analogues. Acc Chem Res. 2009 Jul 21;42(7):873-80. doi: 10.1021/ar800188e..

118.     Fabritius MP, Soltani V, Cyran CC, Ricke J, Bartenstein P, Auernhammer CJ, Spitzweg C, Schnitzer ML, Ebner R, Mansournia S, Hinterberger A, Lohse A, Sheikh GT, Winkelmann M, Knösel T, Ingenerf M, Schmid-Tannwald C, Kunz WG, Rübenthaler J, Grawe F. Diagnostic accuracy of SSR-PET/CT compared to histopathology in the identification of liver metastases from well-differentiated neuroendocrine tumors. Cancer Imaging. 2023 Sep 28;23(1):92. doi: 10.1186/s40644-023-00614-2.

119.     Wong KK, Cahill JM, Frey KA, Avram AM. Incremental value of 111-in pentetreotide SPECT/CT fusion imaging of neuroendocrine tumors. Acad Radiol. 2010 Mar;17(3):291-7. doi: 10.1016/j.acra.2009.08.015.

120.      Danti G, Berti V, Abenavoli E, Briganti V, Linguanti F, Mungai F, Pradella S, Miele V. Diagnostic imaging of typical lung carcinoids: relationship between MDCT, 111In-Octreoscan and 18F-FDG-PET imaging features with Ki-67 index. Radiol Med. 2020 Aug;125(8):715-729. doi: 10.1007/s11547-020-01172-4.

121.     Abenavoli E, Linguanti F, Briganti V, et al. Typical lung carcinoids: review of classification, radiological signs and nuclear imaging findings. Clin Translat Imaging. 2020 doi: 10.1007/s40336-020-00364-2

122.     Rambaldi PF, Cuccurullo V, Briganti V, Mansi L.The present and future role of (111)In pentetreotide in the PET era. Q J Nucl Med Mol Imaging. 2005 Sep;49(3):225-35.PMID: 16172568 Free article. Review.

123.     Linguanti F, Abenavoli EM, Briganti V, Danti G, Lavacchi D, Matteini M, Vaggelli L, Novelli L, Grosso AM, Mungai F, Mini E, Antonuzzo L, Miele V, Sciagrà R, Berti V. Added prognostic value of molecular imaging parameters over proliferation index in typical lung carcinoid: an [18F]FDG PET/CT and SSTR imaging study. Ann Nucl Med. 2023 Jan;37(1):1-9. doi: 10.1007/s12149-022-01797-7.

124.     Lebtahi R, Le Cloirec J, Houzard C, Daou D, Sobhani I, Sassolas G, Mignon M, Bourguet P, Le Guludec D. Detection of neuroendocrine tumors: 99mTc-P829 scintigraphy compared with 111In-pentetreotide scintigraphy. J Nucl Med. 2002 Jul;43(7):889-95. PMID: 12097458.

125.     Mansi L, Virgolini I. Diagnosis and therapy are walking together on radiopeptides' avenue. Eur J Nucl Med Mol Imaging. 2011 Apr;38(4):605-12. doi: 10.1007/s00259-011-1762-8.PMID: 21365250 Review. No abstract available.

126.     Evangelista L, Mansi L. Theragnostics applications and challenges. Q J Nucl Med Mol Imaging. 2021 Dec;65(4):297-298. doi: 10.23736/S1824-4785.21.03439-7.PMID: 35133095 Free article. No abstract available.

127.     Mapelli P, Mansi L. Molecular Imaging and Theranostics in Pancreatic neuroendocrine Tumours: From a Luminous Present to an Even Brighter Future. Curr Radiopharm. 2019;12(2):93-95. doi: 10.2174/187447101202190530074002.PMID: 31362647

128.     Cuccurullo V, Faggiano A, Scialpi M, Cascini GL, Piunno A, Catalano O, Colao A, Mansi L. Questions and answers: what can be said by diagnostic imaging in neuroendocrine tumors? Minerva Endocrinol. 2012 Dec;37(4):367-77. PMID: 23235192 Review.

129.     Melo IB, Ueda LT, Araujo EB, Muramoto E, Barboz MF, Mengatti J, Buchpiguel CA, Silva CP. Tecnetium-99m as alternative to produce somatostatin-labeled derivatives: comparative biodistribution evaluation with 111In-DTPA-octreotide. Cell Mol Biol (Noisy-le-grand). 2010 May 10;56(2):31-6. PMID: 20525456.

130.     Briganti V, Cuccurullo V, Berti V, Di Stasio GD, Linguanti F, Mungai F, Mansi L. 99mTc-EDDA/HYNIC-TOC is a New Opportunity in Neuroendocrine Tumors of the Lung (and in other Malignant and Benign Pulmonary Diseases). Curr Radiopharm. 2020;13(3):166-176. doi: 10.2174/1874471013666191230143610.

131.     Jiang Y, Hou G, Cheng W. Performance of 68Ga-DOTA-SST PET/CT, octreoscan SPECT/CT and 18F-FDG PET/CT in the detection of culprit tumors causing osteomalacia: a meta-analysis. Nucl Med Commun. 2020 Apr;41(4):370-376. doi: 10.1097/MNM.0000000000001163.

132.     Pang Q, Zhou R, Ni X, Liu Y, Jin J, Wu H, Huo L, Yu W, Chi Y, Li X, Wang O, Li M, Xing X, Jiang Y, Jiajue R, Xia W. Clinical characteristics and surgical outcomes of vertebral lesions associated with tumor-induced osteomalacia: report of 16 patients and review of the literature. Osteoporos Int. 2024 Nov;35(11):1951-1962. doi: 10.1007/s00198-024-07178-2.

133.     Shi X, Jing H, Li F, Zhao Y, Wang Z, Huo L. 99mTc-HYNIC-TOC in the Evaluation of Recurrent Tumor-Induced Osteomalacia. Clin Nucl Med. 2019 Mar;44(3):209-213. doi: 10.1097/RLU.0000000000002458.

134.     Sazonova SI, Ilyushenkova JN, Syrkina AG, Trusov AA, Mochula OV, Mishkina AI, Ryabov VV. Potential utility of SPECT/CT with 99mTc-Tektrotyd for imaging of post-myocardial infarction inflammation. J Nucl Cardiol. 2023 Dec;30(6):2544-2555. doi: 10.1007/s12350-023-03312-5.

135.     Amini A, Jafari E, Pourbehi MR, Iranpour D, Nemati R, Ahmadzadehfar H, Assadi M. Potential Role of Somatostatin Receptor Scintigraphy for In Vivo Imaging of Vulnerable Atherosclerotic Plaques and Its Association with Myocardial Perfusion Imaging Finding: A Preliminary Study. Mol Imaging Radionucl Ther. 2023 Jun 20;32(2):123-130. doi: 10.4274/mirt.galenos.2022.08860.

136.     Grimes J, Celler A, Birkenfeld B, Shcherbinin S, Listewnik MH, Piwowarska-Bilska H, Mikolajczak R, Zorga P. Patient-specific radiation dosimetry of 99mTc-HYNIC-Tyr3-octreotide in neuroendocrine tumors. J Nucl Med. 2011 Sep;52(9):1474-81. doi: 10.2967/jnumed.111.088203.

137.     Zhao A, Fopma S, Agrawal R. Demystifying the CT Radiation Dose Sheet. Radiographics. 2022 Jul-Aug;42(4):1239-1250. doi: 10.1148/rg.210107.

138.     Garai I, Barna S, Nagy G, Forgacs A. Limitations and pitfalls of 99mTc-EDDA/HYNIC-TOC (Tektrotyd) scintigraphy. Nucl Med Rev Cent East Eur. 2016;19(2):93-8. doi: 10.5603/NMR.2016.0019

139.     Balon HR, Brown TL, Goldsmith SJ, Silberstein EB, Krenning EP, Lang O, Dillehay G, Tarrance J, Johnson M, Stabin MG; Society of Nuclear Medicine. The SNM practice guideline for somatostatin receptor scintigraphy 2.0. J Nucl Med Technol. 2011 Dec;39(4):317-24. doi: 10.2967/jnmt.111.098277.

140.      Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev. 2018 Oct;70(4):763-835. doi: 10.1124/pr.117.015388. PMID: 30232095; PMCID: PMC6148080.

141.     Ga 68 DOTATOC prescribing information. Food and Drug Administration; August 2019.

142.     SomaKit TOC: European public assessment report—product information. European Medicines Agency; February 2017.

143.     NETSPOT prescribing information. Food and Drug Administration; June 2016.

144.     Detectnet prescribing information. Food and Drug Administration; September 2021.

145.     European pharmacopoeia 11.3 (01/2024)

146.     Bozkurt MF, Virgolini I, Balogova S, Beheshti M, Rubello D, Decristoforo C, Ambrosini V, Kjaer A, Delgado-Bolton R, Kunikowska J, Oyen WJG, Chiti A, Giammarile F, Sundin A, Fanti S. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F-DOPA. Eur J Nucl Med Mol Imaging. 2017 Aug;44(9):1588-1601. doi: 10.1007/s00259-017-3728-y. Epub 2017 May 25. Erratum in: Eur J Nucl Med Mol Imaging. 2017 Nov;44(12):2150-2151. doi: 10.1007/s00259-017-3807-0. PMID: 28547177.

147.     Hope TA, Bergsland EK, Bozkurt MF, et al. Appropriate use criteria for somatostatin receptor PET imaging in neuroendocrine tumors. J Nucl Med. 2018;59:66–74. 5.

148.     Hope TA. Updates to the appropriate-use criteria for somatostatin receptor PET [editorial]. J Nucl Med. 2020;61:1764.

149.     Geijer H akan, Breimer LH. Somatostatin receptor PET/CT in neuroendocrine tumours: update on systematic review and meta-analysis. European Journal of Nuclear Medicine and Molecular Imaging 2013;40:1770–1780. https://doi.org/10.1007/s00259-013-2482-z.

150.     Fendler WP, Barrio M, Spick C, Allen-Auerbach M, Ambrosini V, Benz M, et al. 68Ga-DOTATATE PET/CT Interobserver Agreement for Neuroendocrine Tumor Assessment: Results of a Prospective Study on 50 Patients. J Nucl Med 2017;58:307–11. https://doi.org/10.2967/jnumed.116.179192.

151.     Skoura E, Michopoulou S, Mohmaduvesh M, Panagiotidis E, Al Harbi M, Toumpanakis C, et al. The Impact of 68Ga-DOTATATE PET/CT Imaging on Management of Patients with Neuroendocrine Tumors: Experience from a National Referral Center in the United Kingdom. Journal of Nuclear Medicine 2016;57:34–40. https://doi.org/10.2967/jnumed.115.166017.

152.     Sandstrom M, Velikyan I, Garske-Roman U, Sorensen J, Eriksson B, Granberg D, et al. Comparative Biodistribution and Radiation Dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in Patients with Neuroendocrine Tumors. Journal of Nuclear Medicine 2013;54:1755–1759. https://doi.org/10.2967/jnumed.113.120600.

153.     Pettinato C, Sarnelli A, Di Donna M, Civollani S, Nanni C, Montini G, et al. 68Ga-DOTANOC: biodistribution and dosimetry in patients affected by neuroendocrine tumors. European Journal of Nuclear Medicine and Molecular Imaging 2008;35:72–79. https://doi.org/10.1007/s00259-007-0587-y.

154.     Virgolini I, Gabriel M, Kroiss A, et al. Current knowledge on the sensitivity of the 68Ga-somatostatin receptor positron emission tomography and the SUVmax reference range for management of pancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2016;43:2072–2083

155.     Ambrosini V, Caplin M, Castaño JP, Christ E, Denecke T, Deroose CM, Dromain C, Falconi M, Grozinsky-Glasberg S, Hicks RJ, Hofland J, Kjaer A, Knigge UP, Kos-Kudla B, Koumarianou A, Krishna B, Lamarca A, Pavel M, Reed NS, Scarpa A, Srirajaskanthan R, Sundin A, Toumpanakis C, Prasad V. Use and perceived utility of [18 F]FDG PET/CT in neuroendocrine neoplasms: A consensus report from the European Neuroendocrine Tumor Society (ENETS) Advisory Board Meeting 2022. J Neuroendocrinol. 2024 Jan;36(1):e13359. doi: 10.1111/jne.13359. Epub 2023 Dec 14. PMID: 38097193.

156.     Prasad V, Koumarianou A, Denecke T, Sundin A, Deroose CM, Pavel M, Christ E, Lamarca A, Caplin M, Castaño JP, Dromain C, Falconi M, Grozinsky-Glasberg S, Hofland J, Knigge UP, Kos-Kudla B, Krishna BA, Reed NS, Scarpa A, Srirajaskanthan R, Toumpanakis C, Kjaer A, Hicks RJ, Ambrosini V. Challenges in developing response evaluation criteria for peptide receptor radionuclide therapy: A consensus report from the European Neuroendocrine Tumor Society Advisory Board Meeting 2022 and the ENETS Theranostics Task Force. J Neuroendocrinol. 2025 Feb;37(2):e13479. doi: 10.1111/jne.13479. Epub 2024 Dec 9. PMID: 39653582.

157.      Bergström M, Eriksson B, Oberg K, Sundin A, Ahlström H, Lindner KJ, et al. In vivo demonstration of enzyme activity in endocrine pancreatic tumors: decarboxylation of carbon-11-DOPA to carbon-11-dopamine. J Nucl Med 1996;37:32–7.8543997

158.     Imperiale A, Rust E, Gabriel S, Detour J, Goichot B, Duclos B, Kurtz JE, et al. 18F-fluorodihydroxyphenylalanine PET/CT in patients with neuroendocrine tumors of unknown origin: relation to tumor origin and differentiation. J Nucl Med. 2014;55(3):367-72. https://doi.org/10.2967/jnumed.113.126896. PMID: 24343986.

159.     Balogova S, Talbot JN, Nataf V, Michaud L, Huchet V, Kerrou K, et al. 18F-Fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. Eur J Nucl Med Mol Imaging 2013;40:943–966. https://doi.org/10.1007/s00259-013-2342-x.

160.     Piccardo A, Lopci E, Conte M, Garaventa A, Foppiani L, Altrinetti V, et al. Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging 2012;39:57–71. https://doi.org/10.1007/s00259-011-1938-2.

161.     Liu Y-L, Lu M-Y, Chang H-H, Lu C-C, Lin D-T, Jou S-T, et al. Diagnostic FDG and FDOPA positron emission tomography scans distinguish the genomic type and treatment outcome of neuroblastoma. Oncotarget 2016;7:18774–86. https://doi.org/10.18632/oncotarget.7933.

162.     Wang Y, Xu Y, Kan Y, Wang W, Yang J. Diagnostic value of seven different imaging modalities for patients with neuroblastic tumors: a network meta-analysis. Contrast Media Mol Imaging. 2021;2021:5333366. https://doi.org/10.1155/2021/5333366. PMID: 34548851; PMCID: PMC8429030.

163.     Liu CJ, Lu MY, Liu YL, Ko CL, Ko KY, Tzen KY, et al. Risk Stratification of pediatric patients with neuroblastoma using volumetric parameters of 18F-FDG and 18F-DOPA PET/CT. Clin Nucl Med. 2017;42(3):e142-e148. https://doi.org/10.1097/RLU.0000000000001529. PMID: 28072621.

164.     Hung WT, Liu CJ, Liu YL, Ko KY, Chou SW, Chang HH, et al. Feasibility of 18F-DOPA and 18F-FDG PET/CT for guiding decision-making for localized incidental neuroblastoma in infants under 18 months of age. Pediatr Blood Cancer. 2024;71(7):e30983. https://doi.org/10.1002/pbc.30983. PMID: 38605509.

165.     Morbelli S, Esposito G, Arbizu J, Barthel H, Boellaard R, Bohnen NI, et al. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging. 2020;47(8):1885-1912. https://doi.org/10.1007/s00259-020-04817-8. PMID: 32388612; PMCID: PMC7300075.

166.     Vander Borght T, Asenbaum S, Bartenstein P, Halldin C, Kapucu O, Van Laere K, et al. European Association of Nuclear Medicine (EANM). EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging. 2006;33(11):1374-80. https://doi.org/10.1007/s00259-006-0206-3. PMID: 16932934.

167.     Talbot JN, Kerrou K, Montravers F, Nataf V, Chevalme Y. FDOPA PET has clinical utility in brain tumour imaging: a proposal for a revision of the recent EANM guidelines. Eur J Nucl Med Mol Imaging. 2007;34(7):1131-2 https://doi.org/10.1007/s00259-007-0400-y. PMID: 17437107.

168.     Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46(3):540-557. https://doi.org/10.1007/s00259-018-4207-9. PMID: 30519867; PMCID: PMC6351513.

169.     Piccardo A, Albert NL, Borgwardt L, Fahey FH, Hargrave D, Galldiks N, et al. Joint EANM/SIOPE/RAPNO practice guidelines/SNMMI procedure standards for imaging of paediatric gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2022;49(11):3852-3869. https://doi.org/10.1007/s00259-022-05817-6. PMID: 35536420; PMCID: PMC9399211.

170.     Tripathi M, Sharma R, DʼSouza M, Jaimini A, Panwar P, Varshney R, et al. Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med 2009;34:878–883. https://doi.org/10.1097/RLU.0b013e3181becfe0.

171.     Karunanithi S, Sharma P, Kumar A, Khangembam BC, Bandopadhyaya GP, Kumar R, et al. 18F-FDOPA PET/CT for detection of recurrence in patients with glioma: prospective comparison with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 2013;40:1025–1035. https://doi.org/10.1007/s00259-013-2384-0.

172.     Bund C, Heimburger C, Imperiale A, Lhermitte B, Chenard MP, Lefebvre F, et al. FDOPA PET-CT of nonenhancing brain tumors. Clin Nucl Med. 2017;42(4):250-257. https://doi.org/10.1097/RLU.0000000000001540. PMID: 28114224.

173.     Domenech Brasero B, Mestre-Fusco A, Suárez Piñera M, Puertas Calvo E, Perich Alsina X, Montes G, Plaza López P. Preliminary evaluation of cerebral 18F-DOPA PET/CT in the differential diagnosis of brain lesions in inconclusive MR. Rev Esp Med Nucl Imagen Mol (Engl Ed). 2021;40(4):214-221. https://doi.org/10.1016/j.remnie.2020.10.011. PMID: 34218883.

174.     Verger A, Metellus P, Sala Q, Colin C, Bialecki E, Taieb D, et al. IDH mutation is paradoxically associated with higher 18F-FDOPA PET uptake in diffuse grade II and grade III gliomas. Eur J Nucl Med Mol Imaging. 2017;44(8):1306-1311. https://doi.org/10.1007/s00259-017-3668-6. PMID: 28293705.

175.     Cicone F, Carideo L, Scaringi C, Arcella A, Giangaspero F, Scopinaro F, Minniti G. 18F-DOPA uptake does not correlate with IDH mutation status and 1p/19q co-deletion in glioma. Ann Nucl Med. 2019;33(4):295-302. https://doi.org/.1007/s12149-018-01328-3. PMID: 30607877.

176.     Lu MY, Liu YL, Chang HH, Jou ST, Yang YL, Lin KH, et al. Characterization of neuroblastic tumors using 18F-FDOPA PET. J Nucl Med 2013;54:42–49. https://doi.org/10.2967/jnumed.112.102772.

177.     Xiaoxue T, Yinzhong W, Meng Q, Lu X, Lei J. Diagnostic value of PET with different radiotracers and MRI for recurrent glioma: a Bayesian network meta-analysis. BMJ Open 2023;13:e062555. https://doi.org/10.1136/bmjopen-2022-062555

178.     Walter F, Cloughesy T, Walter MA, Lai A, Nghiemphu P, Wagle N, et al. Impact of 3,4-Dihydroxy-6-18 F-Fluoro-L-Phenylalanine PET/CT on managing patients with brain tumors: The referring physician’s perspective. J Nucl Med 2012;53:393–398. https://doi.org/10.2967/jnumed.111.095711.

179.     Darcourt J, Chardin D, Bourg V, Gal J, Schiappa R, Blonski M, et al. Added value of [18F]FDOPA PET to the management of high-grade glioma patients after their initial treatment: a prospective multicentre study. Eur J Nucl Med Mol Imaging. 2023;50(9):2727-2735. https://doi.org/10.1007/s00259-023-06225-0. PMID: 37086272.

180.     Chen W, Silverman DHS, Delaloye S, Czernin J, Kamdar N, Pope W, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 2006;47:904–11.

181.     Ginet M, Zaragori T, Marie PY, Roch V, Gauchotte G, Rech F, et al. Integration of dynamic parameters in the analysis of 18F-FDopa PET imaging improves the prediction of molecular features of gliomas. Eur J Nucl Med Mol Imaging. 2020;47(6):1381-1390. https://doi.org/10.1007/s00259-019-04509-y. PMID: 31529264.

182.     Rozenblum L, Zaragori T, Tran S, Morales-Martinez A, Taillandier L, Blonski M, et al. Differentiating high-grade glioma progression from treatment-related changes with dynamic [18F]FDOPA PET: a multicentric study. Eur Radiol. 2023;33(4):2548-2560. https://doi.org/10.1007/s00330-022-09221-4. PMID: 36367578

183.     Humbert O, Bourg V, Mondot L, Gal J, Bondiau PY, Fontaine D, et al. 18F-DOPA PET/CT in brain tumors: impact on multidisciplinary brain tumor board decisions. Eur J Nucl Med Mol Imaging. 2019;46(3):558-568. https://doi.org/10.1007/s00259-018-4240-8. Erratum in: Eur J Nucl Med Mol Imaging. 2019;46(7):1581. https://doi.org/0.1007/s00259-019-04321-8. PMID: 30612162.

184.     Bozkurt MF, Virgolini I, Balogova S, Beheshti M, Rubello D, Decristoforo C, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F-DOPA. Eur J Nucl Med Mol Imaging. 2017;44(9):1588-1601. https://doi.org/10.1007/s00259-017-3728-y. Erratum in: Eur J Nucl Med Mol Imaging. 2017;44(12):2150-2151. https://doi.org/10.1007/s00259-017-3807-0. PMID: 28547177.

185.     Ribeiro MJ, De Lonlay P, Delzescaux T, Boddaert N, Jaubert F, Bourgeois S, et al. Characterization of hyperinsulinism in infancy assessed with PET and 18F-fluoro-L-DOPA. J Nucl Med. 2005;46: 560–6. 15809476

186.     Sagar S, Arora G, Damle N, Sharma R, Jain V, Jana M, et al. F-18 DOPA PET/CT in pediatric patients with hyperinsulinemic hypoglycemia: A correlation with genetic analysis. Nucl Med Commun. 2022 Apr 1;43(4):451-457. https://doi.org/10.1097/MNM.0000000000001526. PMID: 35045547.

187.     Treglia G, Mirk P, Giordano A, Rufini V. Diagnostic performance of fluorine-18-dihydroxyphenylalanine positron emission tomography in diagnosing and localizing the focal form of congenital hyperinsulinism: a meta-analysis. Ped Radiol 2012;42:1372–1379. https://doi.org/10.1007/s00247-012-2459-2.

188.     Blomberg BA, Moghbel MC, Saboury B, Stanley CA, Alavi A. The value of radiologic interventions and 18F-DOPA PET in diagnosing and localizing focal congenital hyperinsulinism: systematic review and meta-analysis. Mol Imaging Biol : 2013;15:97–105. https://doi.org/10.1007/s11307-012-0572-0.

189.     Zobel MJ, McFarland C, Ferrera-Cook CT, Padilla BE. Surgical management of medically-refractory hyperinsulinism. Am J Surg. 2020;219(6):947-951. https://doi.org/10.1016/j.amjsurg.2019.09.003. PMID: 31757439

190.     Boss M, Rottenburger C, Brenner W, Blankenstein O, Prasad V, Prasad S, et al. 68Ga-NODAGA-exendin-4 PET/CT improves the detection of focal congenital hyperinsulinism. J Nucl Med. 2022;63(2):310-315. https://doi.org/10.2967/jnumed.121.262327. PMID: 34215672; PMCID: PMC8805776.

191.     Tessonnier L, Sebag F, Ghander C, De Micco C, Reynaud R, Palazzo FF, et al. Limited value of 18F-F-DOPA PET to localize pancreatic insulin-secreting tumors in adults with hyperinsulinemichypoglycemia. J Clin Endocrinol Metab. 2010;95:303–7. https://doi.org/10.1210/jc.2009-1357. PMID: 19915018.

192.     Imperiale A, Boursier C, Sahakian N, Ouvrard E, Chevalier E, Sebag F, et al. Value of 68Ga-DOTATOC and carbidopa-assisted 18F-DOPA PET/CT for insulinoma localization. J Nucl Med. 2022;63(3):384-388. https://doi.org/10.2967/jnumed.121.262401. PMID: 34272321; PMCID: PMC8978186.

193.     Boss M, Eriksson O, Mikkola K, Eek A, Brom M, Buitinga M, et al. Improved localization of insulinomas using 68Ga-NODAGA-exendin-4 PET/CT. J Nucl Med. 2024;65(12):1959-1964. https://doi.org/10.2967/jnumed.124.268158. PMID: 39419553; PMCID: PMC11619583.

194.     Taïeb D, Hicks RJ, Hindié E, Guillet BA, Avram A, Ghedini P, et al. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2019;46(10):2112-2137. https://doi.org/10.1007/s00259-019-04398-1. PMID: 31254038; PMCID: PMC7446938.

195.     Noordzij W, Glaudemans AWJM, Schaafsma M, van der Horst-Schrivers ANA, Slart RHJA, van Beek AP, Kerstens MN. Adrenal tracer uptake by 18F-FDOPA PET/CT in patients with pheochromocytoma and controls. Eur J Nucl Med Mol Imaging. 2019;46(7):1560-1566. https://doi.org/10.1007/s00259-019-04332-5. PMID: 31011769; PMCID: PMC6533226.

196.     Hoegerle S, Nitzsche E, Altehoefer C, Ghanem N, Manz T, Brink I, et al. Pheochromocytomas: Detection with 18 F DOPA whole-body PET—initial results. Radiology 2002;222:507–512. https://doi.org/10.1148/radiol.2222010622.

197.     King KS, Chen CC, Alexopoulos DK, Whatley MA, Reynolds JC, Patronas N, et al. Functional imaging of SDHx-related head and neck paragangliomas: comparison of 18F-fluorodihydroxyphenylalanine, 18F-fluorodopamine, 18F-fluoro-2-deoxy-D-glucose PET, 123I-metaiodobenzylguanidine scintigraphy, and 111In-pentetreotide scintigraphy. J Clin Endocrinol Metab 2011;96:2779–85. https://doi.org/10.1210/jc.2011-0333.

198.     Miederer M, Fottner C, Rossmann H, Helisch A, Papaspyrou K, Bartsch O, et al. High incidence of extraadrenal paraganglioma in families with SDHx syndromes detected by functional imaging with [18F]fluorodihydroxyphenylalanine PET. Eur J Nucl Med Mol Imaging 2013;40:889–896. https://doi.org/10.1007/s00259-013-2346-6.

199.     Hoegerle S, Ghanem N, Altehoefer C, Schipper J, Brink I, Moser E, et al. 18F-DOPA positron emission tomography for the detection of glomus tumours. Eur J Nucl Med Mol Imaging 2003;30:689–694. https://doi.org/10.1007/s00259-003-1115-3.

200.     Treglia G, Cocciolillo F, de Waure C, Di Nardo F, Gualano MR, Castaldi P, et al. Diagnostic performance of 18F-dihydroxyphenylalanine positron emission tomography in patients with paraganglioma: a meta-analysis. Eur J Nucl Med Mol Imaging 2012;39:1144–53. https://doi.org/10.1007/s00259-012-2087-y.

201.     Timmers HJLM, Chen CC, Carrasquillo JA, Whatley M, Ling A, Havekes B, et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2009;94:4757–67. https://doi.org/10.1210/jc.2009-1248.

202.     Imani F, Agopian VG, Auerbach MS, Walter MA, Imani F, Benz MR, et al. 18F-FDOPA PET and PET/CT accurately localize pheochromocytomas. J Nucl Med 2009;50:513–519. https://doi.org/10.2967/jnumed.108.058396.

203.     Luster M, Karges W, Zeich K, Pauls S, Verburg FA, Dralle H, et al. Clinical value of 18F-fluorodihydroxyphenylalanine positron emission tomography/computed tomography (18F-DOPA PET/CT) for detecting pheochromocytoma. Eur J Nucl Med Mol Imaging 2010;37:484–493. https://doi.org/10.1007/s00259-009-1294-7.

204.     Taïeb D, Tessonnier L, Sebag F, Niccoli-Sire P, Morange I, Colavolpe C, et al. The role of 18F-FDOPA and 18F-FDG-PET in the management of malignant and multifocal phaeochromocytomas. Clin Endocrinol 2008;69:580–586. https://doi.org/10.1111/j.1365-2265.2008.03257.x.

205.     Fottner C, Helisch A, Anlauf M, Rossmann H, Musholt TJ, Kreft A, et al. F-Fluoro-L-dihydroxyphenylalanine Positron Emission Tomography is superior to I-metaiodobenzyl-guanidine scintigraphy in the detection of extraadrenal and hereditary pheochromocytomas and paragangliomas: correlation with vesicular monoamine transporter . J Clin Endocrinol Metab 2010;95:2800–10. https://doi.org/10.1210/jc.2009-2352. PMID: 20371665.

206.     Fiebrich HB, Brouwers AH, Kerstens MN, Pijl MEJ, Kema IP, de Jong JR, et al. 6-[F-18]Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with 123I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 2009;94:3922–30. https://doi.org/10.1210/jc.2009-1054.

207.     Archier A, Varoquaux A, Garrigue P, Montava M, Guerin C, Gabriel S, et al. Prospective comparison of 68Ga-DOTATATE and 18F-FDOPA PET/CT in patients with various pheochromocytomas and paragangliomas with emphasis on sporadic cases. Eur J Nucl Med Mol Imaging 2016;43:1248–1257. https://doi.org/10.1007/s00259-015-3268-2.

208.     Ebbehoj A, Iversen P, Kramer S, Stochholm K, Poulsen PL, Hjorthaug K, Søndergaard E. Positron emission tomography imaging of pheochromocytoma and paraganglioma- 18F-FDOPA vs somatostatin analogues. J Clin Endocrinol Metab 2025;110(2):303-316. https://doi.org/10.1210/clinem/dgae764. PMID: 39468778.

209.     Weisbrod AB, Kitano M, Gesuwan K, Millo C, Herscovitch P, Nilubol N, et al. Clinical utility of functional imaging with 18F-FDOPA in Von Hippel-Lindau syndrome. J Clin Endocrinol Metab 2012;97:E613–7. https://doi.org/10.1210/jc.2011-2626.

210.     Janssen I, Chen CC, Zhuang Z, Millo CM, Wolf KI, Ling A, et al. Functional imaging signature of patients presenting with polycythemia/paraganglioma syndromes. J Nucl Med 2017;58: 1236–42. https://doi.org/10.2967/jnumed.116.187690. PMID: 28336782; PMCID: PMC5537614.

211.     Darr R, Nambuba J, Del Rivero J, Janssen I, Merino M, Todorovic M, et al. Novel insights into the polycythemia-paraganglioma-somatostatinoma syndrome. Endocr Relat Cancer 2016;23:899– 908. https://doi.org/10.1530/ERC-16-0231. PMID: 27679736; PMCID: PMC5096964.

212.     Giovanella L, Treglia G, Iakovou I, Mihailovic J, Verburg FA, Luster M. EANM practice guideline for PET/CT imaging in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2020;47(1):61-77. https://doi.org/10.1007/s00259-019-04458-6. PMID: 31482429.

213.     Rasul S, Hartenbach S, Rebhan K, Göllner A, Karanikas G, Mayerhoefer M, et al. [18F]DOPA PET/ceCT in diagnosis and staging of primary medullary thyroid carcinoma prior to surgery. Eur J Nucl Med Mol Imaging 2018;45(12):2159-2169. https://doi.org/10.1007/s00259-018-4045-9. PMID: 29766245; PMCID: PMC6182401.

214.     Brammen L, Niederle MB, Riss P, Scheuba C, Selberherr A, Karanikas G, et al. Medullary Thyroid Carcinoma: Do Ultrasonography and F-DOPA-PET-CT Influence the Initial Surgical Strategy? Ann Surg Oncol 2018;25(13):3919-3927. https://doi.org/10.1245/s10434-018-6829-3. PMID: 30306375; PMCID: PMC6245031.

215.      Kloos RT, Eng C, Evans DB, Francis GL, Gagel RF, Gharib H, et al. Medullary thyroid cancer: management Guidelines of the American Thyroid Association. Thyroid 2009;19:565–612. https://doi.org/10.1089/thy.2008.0403.

216.     Zhang Z, Yu J, Rainer E, Hargitai L, Jiang Z, Karanikas G, et al. The role of [18F]F-DOPA PET/CT in diagnostic and prognostic assessment of medullary thyroid cancer: a 15-year experience with 109 patients. Eur Thyroid J 2024;13(4):e240089. https://doi.org/10.1530/ETJ-24-0089. PMID: 38900599; PMCID: PMC11301540.

217.     Verbeek HHG, Plukker JTM, Koopmans KP, de Groot JWB, Hofstra RMW, Muller Kobold AC, et al. Clinical relevance of 18F-FDG PET and 18F-DOPA PET in recurrent medullary thyroid carcinoma. J Nucl Med 2012;53:1863–1871. https://doi.org/10.2967/jnumed.112.105940.

218.     Hoegerle S, Altehoefer C, Ghanem N, Brink I, Moser E, Nitzsche E. 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 2001;28:64–71. https://doi.org/10.1007/s002590000404.

219.     Beuthien-Baumann B, Strumpf A, Zessin J, Bredow J, Kotzerke J. Diagnostic impact of PET with 18F-FDG, 18F-DOPA and 3-O-methyl-6-[18F]fluoro-DOPA in recurrent or metastatic medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2007;34:1604–1609. https://doi.org/10.1007/s00259-007-0425-2.

220.     Marzola MC, Pelizzo MR, Ferdeghini M, Toniato A, Massaro A, Ambrosini V, et al. Dual PET/CT with 18F-DOPA and 18F-FDG in metastatic medullary thyroid carcinoma and rapidly increasing calcitonin levels: Comparison with conventional imaging. Eur J Surg Oncol 2010;36:414–421. https://doi.org/10.1016/j.ejso.2010.01.001.

221.     Treglia G, Castaldi P, Villani MF, Perotti G, de Waure C, Filice A, et al. Comparison of 18F-DOPA, 18F-FDG and 68Ga-somatostatin analogue PET/CT in patients with recurrent medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2012;39:569–580. https://doi.org/10.1007/s00259-011-2031-6.

222.     Archier A, Heimburger C, Guerin C, Morange I, Palazzo FF, Henry J-F, et al. 18F-DOPA PET/CT in the diagnosis and localization of persistent medullary thyroid carcinoma Eur J Nucl Med Mol Imaging 2016;43:1027–1033. https://doi.org/10.1007/s00259-015-3227-y.

223.     Slavikova K, Montravers F, Treglia G, Kunikowska J, Kaliska L, Vereb M, et al. What is currently the best radiopharmaceutical for the hybrid PET/CT detection of recurrent medullary thyroid carcinoma? Curr Radiopharm 2013;6:96–105. https://doi.org/10.2174/1874471011306020006. PMID: 23745775.

224.     Lee SW, Shim SR, Jeong SY, Kim SJ. Comparison of 5 different PET radiopharmaceuticals for the detection of recurrent medullary thyroid carcinoma: a network meta-analysis. Clin Nucl Med 2020;45(5):341-348. https://doi.org/10.1097/RLU.0000000000002940. PMID: 32049723.

225.     Caobelli F, Chiaravalloti A, Evangelista L, Saladini G, Schillaci O, Vadrucci M, et al. Predictive and prognostic value of 18F-DOPA PET/CT in patients affected by recurrent medullary carcinoma of the thyroid. Ann Nucl Med 2018;32(1):7-15. https://doi.org/0.1007/s12149-017-1213-0.. Erratum in: Ann Nucl Med 2018;32(6):430. https://doi.org/10.1007/s12149-018-1265-9. PMID: 28986764.

226.     Kauhanen S, Schalin-Jantti C, Seppanen M, Kajander S, Virtanen S, Schildt J, et al. Complementary roles of 18F-DOPA PET/CT and 18F-FDG PET/CT in medullary thyroid cancer. J Nucl Med 2011;52:1855–1863. https://doi.org/10.2967/jnumed.111.094771.

227.     Asa S, Sonmezoglu K, Uslu-Besli L, Sahin OE, Karayel E, Pehlivanoglu H, et al. Evaluation of F-18 DOPA PET/CT in the detection of recurrent or metastatic medullary thyroid carcinoma: comparison with Ga-68 DOTA-TATE PET/CT. Ann Nucl Med 2021;35(8):900-915. https://doi.org/10.1007/s12149-021-01627-2. PMID: 33993425

228.     Soussan M, Nataf V, Kerrou K, Grahek D, Pascal O, Talbot J-N, et al. Added value of early 18F-FDOPA PET/CT acquisition time in medullary thyroid cancer. Nucl Med Commun 2012;33:775–779. https://doi.org/10.1097/MNM.0b013e3283543304.

229.     Kjærulff MLG, Dias AH, Iversen P, Gormsen LC, Hjorthaug K. Early acquisition of [18F]FDOPA PET/CT imaging in patients with recurrent or residual medullary thyroid cancer is safe-and slightly better! Eur J Hybrid Imaging 2022;6(1):20. https://doi.org/10.1186/s41824-022-00140-7. PMID: 36002696; PMCID: PMC9402850.

230.     Taralli S, Lorusso M, Capotosti A, Lanni V, Indovina L, Rufini V. Which is the optimal scan time of 18F-DOPA PET/CT in patients with recurrent medullary thyroid carcinoma? Results from a dynamic acquisition study. Clin Nucl Med 2020;45(3):e134-e140. https://doi.org/10.1097/RLU.0000000000002925. PMID: 31977485.

231.     Koopmans KP, Neels OC, Kema IP, Elsinga PH, Sluiter WJ, Vanghillewe K, et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J Clin Oncol 2008;26:1489–1495. https://doi.org/10.1200/JCO.2007.15.1126.

232.     Montravers F, Grahek D, Kerrou K, Ruszniewski P, de Beco V, Aide N, et al. Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? J Nucl Med 2006;47:1455–62.

233.     Yakemchuk VN, Jager PL, Chirakal R, Reid R, Major P, Gulenchyn KY. PET/CT using 18F-FDOPA provides improved staging of carcinoid tumor patients in a Canadian setting. Nucl Med Commun 2012;33:322–330. https://doi.org/10.1097/MNM.0b013e32834f2603.

234.     Morland D, Jallerat P, Brixi H, Cadiot G, Papathanassiou D, Deguelte S. Performances of 18F-FDOPA PET/CT in the preoperative evaluation of the peritoneal cancer index in small intestine neuroendocrine tumors. Clin Nucl Med. 2022;47(4):294-298. https://doi.org/10.1097/RLU.0000000000004057. PMID: 35067541.

235.     Montravers F, Kerrou K, Nataf V, Huchet V, Lotz JP, Ruszniewski P, et al. Impact of fluorodihydroxyphenylalanine-18F positron emission tomography on management of adult patients with documented or occult digestive endocrine tumors. J Clin Endocrinol Metab 2009;94(4):1295-301. https://doi.org/10.1210/jc.2008-1349. PMID: 19141589.

236.     Piccardo A, Fiz F, Bottoni G, Ugolini M, Noordzij W, Trimboli P. Head-to-head comparison between 18 F-DOPA PET/CT and 68 Ga-DOTA peptides PET/CT in detecting intestinal neuroendocrine tumours: A systematic review and meta-analysis. Clin Endocrinol (Oxf). 2021;95(4):595-605. https://doi.org/10.1111/cen.14527. PMID: 34018606.

237.     Ouvrard E, Chevalier E, Addeo P, Sahakian N, Detour J, Goichot B, et al. Intraindividual comparison of 18 F-FDOPA and 68 Ga-DOTATOC PET/CT detection rate for metastatic assessment in patients with ileal neuroendocrine tumours. Clin Endocrinol (Oxf). 2021;94(1):66-73. https://doi.org/10.1111/cen.14312. PMID: 32790887.

238.     82]  Helali M, Addeo P, Heimburger C, Detour J, Goichot B, Bachellier P, et al. Carbidopa-assisted 18F-fluorodihydroxyphenylalanine PET/CT for the localization and staging of non-functioning neuroendocrine pancreatic tumors. Ann Nucl Med 2016;30:659–668. https://doi.org/10.1007/s12149-016-1110-y.

239.     Noordzij W, van Beek AP, Tio RA, van der Horst-Schrivers AN, de Vries EG, van Ginkel B, et al. Myocardial metastases on 6-[18F] fluoro-L-DOPA PET/CT: a retrospective analysis of 116 serotonin producing neuroendocrine tumour patients. PLoS One 2014;9(11):e112278. https://doi.org/: 10.1371/journal.pone.0112278. PMID: 25397775; PMCID: PMC4232397.

240.     Morland D, Jallet L, Deguelte S, Cadiot G, Papathanassiou D. Orbital metastasis: a rare but typical location of small intestine neuroendocrine tumor on 18F-FDOPA PET/CT. Clin Nucl Med 2022;47(8):717-718. https://doi.org/10.1097/RLU.0000000000004137PMID: 35797630.

241.     Mattsson S, Johansson L, Leide Svegborn S, Liniecki J, Noßke D, Riklund KÅ, et al. ICRP Publication 128. Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances. Ann ICRP 2015;44:7–321. https://doi.org/10.1177/0146645314558019.

242.     ICRP. ICRP Publication 80. Radiation Dose to Patients from Radiopharmaceuticals: A Compendium of Current Information Related to Frequently Used Substances. Annals ICRP 1998;28.ISBN 0 08 043 5734

243.     ICRP. ICRP Publication 53. Radiation dose to patients from radiopharmaceuticals. Annals ICRP 1988;18. ISBN 0 08 035591 9

244.     EANM Internal Dosimetry Task Force Report. Treatment Planning For Molecular Radiotherapy: Potential And Prospects 2017. 10.1186/s40658-017-0194-3

245.     Bombardieri E, Giammarile F, Aktolun C, Baum RP, Bischof Delaloye A, Maffioli L, et al. 131 I/ 123 I-Metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 2010;37:2436–2446. https://doi.org/10.1007/s00259-010-1545-7.

246.     Zi F, He J, He D, Li Y, Yang L, Cai Z. Fibroblast activation protein α in tumor microenvironment: Recent progression and implications. Mol. Med. Rep. 2015; 11:3203–3211. DOI: 10.3892/mmr.2015.3197

247.     Mori Y, Novruzov E, Schmitt D, Cardinal J, Watabe T, Choyke PL, Alavi A, Haberkorn U, Giesel FL. Clinical applications of Fibroblast Activation Protein Inhibitor Positron Emission Tomography (FAPI-PET). npj Imaging. 2024;2 (48). DOI: 10.1038/s44303-024-00053-z

248.     Siveke JT. Fibroblast-activating protein: targeting the roots of the tumor microenvironment. J Nucl Med. 2018; 59:1412–141. DOI: 10.2967/jnumed.118.214361

249.     Mori Y, Dendl K, Cardinale J, Kratochwil C, Giesel FL, Haberkorn U. FAPI PET: Fibroblast Activation Protein Inhibitor Use in Oncologic and Nononcologic Disease. Radiology. 2023 Feb;306(2):e220749. DOI: 10.1148/radiol.220749

250.     Kessler L, Ferdinandus J, Hirmas N, et al. 68Ga-FAPI as a Diagnostic Tool in Sarcoma: Data from the 68Ga-FAPI PET Prospective Observational Trial. J Nucl Med. 2022;63(1):89-95. DOI: 10.2967/jnumed.121.262096

251.     Dendl K, Koerber SA, Finck R, Mokoala KMG, Staudinger F, Schillings L, Heger U, Röhrich M, Kratochwil C, Sathekge M, Jäger D, Debus J, Haberkorn U, Giesel FL. 68Ga-FAPI-PET/CT in patients with various gynecological malignancies. Eur J Nucl Med Mol Imaging. 2021;48(12):4089-4100. DOI: 10.1007/s00259-021-05378-0

252.     Giesel FL, Heussel CP, Lindner T, Rohrich M, Rathke H, Kauczor HU, et al. FAPI-PET/CT improves staging in a lung cancer patient with cerebral metastasis. Eur J Nucl Med Mol Imaging. 2019; 46(8): 1754–5. DOI: 10.1007/s00259-019-04346-z

253.     Koerber SA, Staudinger F, Kratochwil C, Adeberg S, Haefner MF, Ungerechts G, Rathke H, Winter E, Lindner T, Syed M, et al. The Role of 68Ga-FAPI PET/CT for Patients with Malignancies of the Lower Gastrointestinal Tract: First Clinical Experience. J. Nucl. Med. 2020; 61:1331–1336. DOI: 10.2967/jnumed.119.237016

254.     Guo W, Pang Y, Yao L, et al. Imaging fibroblast activation protein in liver cancer: a single-center post hoc retrospective analysis to compare [68Ga]Ga-FAPI-04 PET/CT versus MRI and [18F]-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2021;48(5):1604-1617. DOI: 10.1007/s00259-020-05095-0

255.     Windisch P, Röhrich M, Regnery S, Tonndorf-Martini E, Held T, Lang K, Bernhardt D, Rieken S, Giesel F, Haberkorn U, et al. Fibroblast Activation Protein (FAP) specific PET for advanced target volume delineation in glioblastoma. Radiother. Oncol. 2020; 150:159–163. DOI: 10.1016/j.radonc.2020.06.040

256.     Giesel FL, Kratochwil C, Lindner T, et al. 68Ga-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2 DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers. J Nucl Med 2019;60(3):386–392. DOI: 10.2967/jnumed.118.215913

257.     Giesel FL, Adeberg S, Syed M, Lindner T, Jiménez-Franco LD, Mavriopoulou E, Staudinger F, Tonndorf-Martini E, Regnery S, Rieken S, El Shafie R, Röhrich M, Flechsig P, Kluge A, Altmann A, Debus J, Haberkorn U, Kratochwil C. FAPI-74 PET/CT Using Either 18F-AlF or Cold-Kit 68Ga Labeling: Biodistribution, Radiation Dosimetry, and Tumor Delineation in Lung Cancer Patients. J Nucl Med. 2021; Feb:62(2):201-207. DOI: 10.2967/jnumed.120.245084

258.     Assadi M, Rekabpour SJ, Jafari E, Divband G, Nikkholgh B, Amini H et al. Feasibility and Therapeutic Potential of 177Lu-Fibroblast Activation Protein Inhibitor-46 for Patients With Relapsed or Refractory Cancers: A Preliminary Study. Clin Nucl Med. 2021;46(11):e523-e30. DOI: 10.1097/RLU.0000000000003810

259.     Ballal S, Yadav MP, Moon ES, Kramer VS, Roesch F, Kumari S, Bal C. First-In-Human Results on the Biodistribution, Pharmacokinetics, and Dosimetry of [177Lu]Lu-DOTA.SA.FAPi and [177Lu]Lu-DOTAGA.(SA.FAPi)2. Pharmaceuticals (Basel). 2021 Nov 24;14(12):1212. DOI: 10.3390/ph14121212

260.     Baum RP, Schuchardt C, Singh A, Chantadisai M, Robiller FC, Zhang J et al. Feasibility, Biodistribution and Preliminary Dosimetry in Peptide-Targeted Radionuclide Therapy (PTRT) of Diverse Adenocarcinomas using (177)Lu-FAP-2286: First-in-Human Results. J Nucl Med. 2022; 63(3):415-423. DOI: 10.2967/jnumed.120.259192

261.     Bergmann C, Distler JHW, Treutlein C, et al. 68Ga-FAPI-04 PET-CT for Molecular Assessment of Fibroblast Activation and Risk Evaluation in Systemic Sclerosis-Associated Interstitial Lung Disease: A Single-Centre, Pilot Study. Lancet Rheumatol. 2021;3:e185–e194. DOI: 10.1016/S2665-9913(20)30421-5

262.     Diekmann J, Koenig T, Thackeray JT et al. Cardiac Fibroblast Activation in Patients Early After Acute Myocardial Infarction: Integration with MR Tissue Characterization and Subsequent Functional Outcome. J Nucl Med. 2022;63(9):1415-1423. DOI: 10.2967/jnumed.121.263555

263.     18.therapeutic response of rheumatoid arthritis. Mol. Imaging Biol. 25, 630–637 (2023). DOI: 10.1007/s11307-023-01817-6

264.     Scharitzer M, Macher-Beer A, Mang T, et al. Evaluation of Intestinal Fibrosis with 68Ga-FAPI PET/MR Enterography in Crohn Disease. Radiology. 2023 May;307(3):e222389. DOI: 10.1148/radiol.222389

265.     Luo Y, Pan Q, Yang H, et al. Fibroblast Activation Protein-Targeted PET/CT with 68Ga-FAPI for Imaging IgG4-Related Disease: Comparison to 18F-FDG PET/CT. J Nucl Med. 2021;62(2):266-271. DOI: 10.2967/jnumed.120.244723

266.     Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J et al. Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. J Nucl Med. 2018;59(9):1415-22. DOI: 10.2967/jnumed.118.210443

267.     Lindner T, Altmann A, Kramer S, Kleist C, Loktev A, Kratochwil C et al. Design and Development of (99m)Tc-Labeled FAPI Tracers for SPECT Imaging and (188)Re Therapy. J Nucl Med. 2020;61(10):1507-13. DOI: 10.2967/jnumed.119.239731

268.     Zboralski D, Hoehne A, Bredenbeck A, et al. Preclinical evaluation of FAP-2286 for fibroblast activation protein targeted radionuclide imaging and therapy. Eur J Nucl Med Mol Imaging. 2022 Sep;49(11):3651-3667. DOI: 10.1007/s00259-022-05842-5

269.     Watabe T, Naka S, Tatsumi M, Kamiya T, Kimura T, Shintani Y, Abe K, Miyake T, Shimazu K, Kobayashi S, Kurokawa Y, Eguchi H, Doki Y, Inohara H, Kato H, Mori Y, Cardinale J, Giesel FL. Initial Evaluation of [(18)F]FAPI-74 PET for Various Histopathologically Confirmed Cancers and Benign Lesions. J Nucl Med. 2023 Aug;64(8):1225-1231. DOI: 10.2967/jnumed.123.265486

270.     Röhrich M, Naumann P, Giesel FL et al. Impact of 68 Ga-FAPI PET/CT Imaging on the Therapeutic Management of Primary and Recurrent Pancreatic Ductal Adenocarcinomas. J Nucl Med 2021;62:779–786. DOI: 10.2967/jnumed.120.253062

271.     Chiu ML, Kronauge JF, Piwnica-Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile) technetium(I) in cultured mouse fibroblasts. J Nucl Med. 1990 Oct;31(10):1646-53. PMID: 2213187.

272.     Piwnica-Worms D, Kronauge JF, Chiu ML. Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium(I) in cultured chick myocardial cells. Mitochondrial and plasma membrane potential dependence. Circulation. 1990 Nov;82(5):1826-38. doi: 10.1161/01.cir.82.5.1826. PMID: 2225379.

273.     Del Vecchio S, Salvatore M. 99mTc-MIBI in the evaluation of breast cancer biology. Eur J Nucl Med Mol Imaging. 2004 Jun;31 Suppl 1:S88-96. doi: 10.1007/s00259-004-1530-0. Epub 2004 Apr 23. PMID: 15105972.   

274.     Moretti JL, Hauet N, Caglar M, Rebillard O, Burak Z. To use MIBI or not to use MIBI? That is the question when assessing tumour cells. Eur J Nucl Med Mol Imaging. 2005 Jul;32(7):836-42. doi: 10.1007/s00259-005-1840-x. PMID: 15902437.

275.     Mostafa NM, Elnaggar MS, Abdelhafez YG, Rezk K, Sherif MF, Eltyb HA, Ahmed S, Abu Elnga NE, Hussien MT. In Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002 Jan;2(1):48-58. doi: 10.1038/nrc706. PMID: 11902585.

276.     Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res. 1993 Mar 1;53(5):977-84. PMID: 8094997.

277.     Tiling R, Stephan K, Sommer H, Shabani N, Linke R, Hahn K. Tissue-specific effects on uptake of 99mTc-sestamibi by breast lesions: a targeted analysis of false scintigraphic diagnoses. J Nucl Med. 2004 Nov;45(11):1822-8. PMID: 15534050.

278.     Conners AL, Jones KN, Hruska CB, Geske JR, Boughey JC, Rhodes DJ. Direct-Conversion Molecular Breast Imaging of Invasive Breast Cancer: Imaging Features, Extent of Invasive Disease, and Comparison Between Invasive Ductal and Lobular Histology. AJR Am J Roentgenol. 2015 Sep;205(3):W374-81. doi: 10.2214/AJR.14.13502. PMID: 26295674; PMCID: PMC8900216.

279.     Mansi L, Rambaldi PF, Procaccini E, Gregorio FD, Laprovitera A, Pecori B, Vecchio WD. Scintimammography with technetium-99m tetrofosmin in the diagnosis of breast cancer and lymph node metastases. Eur J Nucl Med. 1996 Aug;23(8):932-9. doi: 10.1007/BF01084367. PMID: 8753682.

280.     Mansi L, Rambaldi PF, Cuccurullo V, Pecori B, Quarantelli M, Fallanca F, Del Vecchio E. Diagnostic and prognostic role of 99mTc-Tetrofosmin in breast cancer. Q J Nucl Med. 1997 Sep;41(3):239-50. PMID: 9274132.

281.     Khalkhali I, Diggles LE, Taillefer R, Vandestreek PR, Peller PJ, Abdel-Nabi HH. Procedure guideline for breast scintigraphy. Society of Nuclear Medicine. J Nucl Med. 1999 Jul;40(7):1233-5. PMID: 10405150.

282.     Bombardieri E, Aktolun C, Baum RP, Bishof-Delaloye A, Buscombe J, Chatal JF, Maffioli L, Moncayo R, Mortelmans L, Reske SN. Breast scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2003 Dec;30(12):BP107-14. doi: 10.1007/s00259-003-1354-3. PMID: 14989223.

283.     Taillefer R. Clinical applications of 99mTc-sestamibi scintimammography. Semin Nucl Med. 2005 Apr;35(2):100-15. doi: 10.1053/j.semnuclmed.2004.11.002. PMID: 15765373.

284.     Sun Y, Wei W, Yang HW, Liu JL. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2013 Feb;40(3):450-63. doi: 10.1007/s00259-012-2279-5. Epub 2012 Nov 14. PMID: 23151912.

285.     Goldsmith SJ, Parsons W, Guiberteau MJ, Stern LH, Lanzkowsky L, Weigert J, Heston TF, Jones E, Buscombe J, Stabin MG; Society of Nuclear Medicine. SNM practice guideline for breast scintigraphy with breast-specific gamma-cameras 1.0. J Nucl Med Technol. 2010 Dec;38(4):219-24. doi: 10.2967/jnmt.110.082271. Epub 2010 Nov 5. PMID: 21057112.

286.     Surti S. Radionuclide methods and instrumentation for breast cancer detection and diagnosis. Semin Nucl Med. 2013 Jul;43(4):271-80. doi: 10.1053/j.semnuclmed.2013.03.003. PMID: 23725989; PMCID: PMC3755372.

287.     Brem RF, Ruda RC, Yang JL, Coffey CM, Rapelyea JA. Breast-Specific γ-Imaging for the Detection of Mammographically Occult Breast Cancer in Women at Increased Risk. J Nucl Med. 2016 May;57(5):678-84. doi: 10.2967/jnumed.115.168385. Epub 2016 Jan 28. PMID: 26823569.

288.     Travaini LL, Baio SM, Cremonesi M, De Cicco C, Ferrari M, Trifirò G, Prisco G, Viale G, Colleoni MA, Radice D, Sivolapenko GB, Paganelli G. Neoadjuvant therapy in locally advanced breast cancer: 99mTc-MIBI mammoscintigraphy is not a reliable technique to predict therapy response. Breast. 2007 Jun;16(3):262-70. doi: 10.1016/j.breast.2006.12.009. Epub 2007 Feb 8. PMID: 17291755.

289.     Narayanan D, Berg WA. Dedicated Breast Gamma Camera Imaging and Breast PET: Current Status and Future Directions. PET Clin. 2018 Jul;13(3):363-381. doi: 10.1016/j.cpet.2018.02.008. PMID: 30100076; PMCID: PMC6116731.

290.     Hatazawa J. The Clinical Value of Breast Specific Gamma Imaging and Positron Imaging: An Update. Semin Nucl Med. 2022 Sep;52(5):619-627. doi: 10.1053/j.semnuclmed.2022.02.005. Epub 2022 Mar 25. PMID: 35346487.

291.     Covington MF, Parent EE, Dibble EH, Rauch GM, Fowler AM. Advances and Future Directions in Molecular Breast Imaging. J Nucl Med. 2022 Jan;63(1):17-21. doi: 10.2967/jnumed.121.261988. Epub 2021 Dec 9. PMID: 34887334; PMCID: PMC8717200.

292.     Fowler AM. A molecular approach to breast imaging. J Nucl Med. 2014 Feb;55(2):177-80. doi: 10.2967/jnumed.113.126102. Epub 2014 Jan 16. PMID: 24434288.

293.     van Loevezijn AA, Corion CLS, Zeillemaker AM, Wijers LMH, Smithuis RHM, Valdés Olmos RA, van der Hage JA, de Geus-Oei LF, Benard M, Pereira Arias-Bouda LM. Clinical impact of molecular breast imaging as adjunct diagnostic modality in evaluation of indeterminate breast abnormalities and unresolved diagnostic concerns. Nucl Med Commun. 2023 Jun 1;44(6):417-426. doi: 10.1097/MNM.0000000000001684. Epub 2023 Mar 10. PMID: 36897051; PMCID: PMC10171295.

294.     Muzahir S. Molecular Breast Cancer Imaging in the Era of Precision Medicine. AJR Am J Roentgenol. 2020 Dec;215(6):1512-1519. doi: 10.2214/AJR.20.22883. Epub 2020 Oct 21. PMID: 33084364.

295.     Dibble EH, Hunt KN, Ehman EC, O'Connor MK. Molecular Breast Imaging in Clinical Practice. AJR Am J Roentgenol. 2020 Aug;215(2):277-284. doi: 10.2214/AJR.19.22622. Epub 2020 Jun 17. PMID: 32551908.

296.     Collarino A, Olmos RAV, Neijenhuis PA, den Hartog WC, Smit F, de Geus-Oei LF, Arias-Bouda LMP. First Clinical Experience Using Stereotactic Breast Biopsy Guided by 99mTc-Sestamibi. AJR Am J Roentgenol. 2017 Dec;209(6):1367-1373. doi: 10.2214/AJR.17.18083. Epub 2017 Apr 5. PMID: 28379735.

297.     Collarino A, Valdés Olmos RA, van der Hoeven AF, Pereira Arias-Bouda LM. Methodological aspects of 99mTc-sestamibi guided biopsy in breast cancer. Clin Transl Imaging. 2016;4(5):367-376. doi: 10.1007/s40336-016-0201-z. Epub 2016 Jul 16. PMID: 27738627; PMCID: PMC5037160.

298.     Hunt KN, Conners AL, Gray L, Hruska CB, O'Connor MK. Molecular Breast Imaging Biopsy with a Dual-Detector System. Radiol Imaging Cancer. 2024 Jun;6(4):e230186. doi: 10.1148/rycan.230186. PMID: 38847615; PMCID: PMC11287224.

299.     Lopez BP, Kappadath SC. Monte Carlo-derived 99m Tc uptake quantification with commercial planar MBI: Absolute tumor activity. Med Phys. 2023 May;50(5):2985-2997. doi: 10.1002/mp.16196. Epub 2023 Jan 12. PMID: 36583691; PMCID: PMC10175170.

300.     Fleming RM. Mitochondrial uptake of sestamibi distinguishes between normal, inflammatory breast changes, pre-cancers, and infiltrating breast cancer. Integr Cancer Ther. 2002 Sep;1(3):229-37. doi: 10.1177/153473540200100302. PMID: 14667281.

301.     Hruska CB, Geske JR, Conners AL, Whaley DH, Rhodes DJ, O'Connor MK, Carter RE, Scott CG, Vachon CM. Background Parenchymal Uptake on Molecular Breast Imaging and Breast Cancer Risk: A Cohort Study. AJR Am J Roentgenol. 2021 May;216(5):1193-1204. doi: 10.2214/AJR.20.23854. Epub 2021 Mar 3. PMID: 32755210; PMCID: PMC8640999.

302.     Hruska CB, Corion C, de Geus-Oei LF, Adrada BE, Fowler AM, Hunt KN, Kappadath SC, Pilkington P, Pereira Arias-Bouda LM, Rauch GM. SNMMI Procedure Standard/EANM Practice Guideline for Molecular Breast Imaging with Dedicated γ-Cameras. J Nucl Med Technol. 2022 Jun 3;50(2):103-110. doi: 10.2967/jnmt.121.264204. PMID: 40168518.

303.     Hruska CB. Updates in Molecular Breast Imaging. Semin Roentgenol. 2022 Apr;57(2):134-138. doi: 10.1053/j.ro.2021.12.006. Epub 2021 Dec 31. PMID: 35523526; PMCID: PMC9077005.

304.     Collarino A, de Koster EJ, Valdés Olmos RA, de Geus-Oei LF, Pereira Arias-Bouda LM. Is Technetium-99m Sestamibi Imaging Able to Predict Pathologic Nonresponse to Neoadjuvant Chemotherapy in Breast Cancer? A Meta-analysis Evaluating Current Use and Shortcomings. Clin Breast Cancer. 2018 Feb;18(1):9-18. doi: 10.1016/j.clbc.2017.06.008. Epub 2017 Jun 29. PMID: 28728876

305.     van de Burgt A, van Velden FHP, Corion CLS, Collarino A, Olmos RAV, Smit F, de Geus-Oei LF, Arias-Bouda LMP. Comparison Between Prone SPECT-Based Semi-Quantitative Parameters and MBI-Based Semi-Quantitative Parameters in Patients with Locally Advanced Breast Cancer. Mol Imaging Biol. 2024 Dec;26(6):926-933. doi: 10.1007/s11307-024-01959-1. Epub 2024 Nov 8. PMID: 39516430; PMCID: PMC11634910.

306.     Vaz SC, Corion CLS, Goeman J, Zeillemaker AM, Hezemans R, de Geus-Oei LF, Pereira Arias-Bouda LM. Can Molecular Breast Imaging With Tc-99m Sestamibi Safely Rule Out Malignancy in Pathologic Nipple Discharge? Clin Nucl Med. 2025 Apr 30. doi: 10.1097/RLU.0000000000005851. Epub ahead of print. PMID: 40302123.

307.      American College of Radiology (ACR). ACR practice parameter for the performance of molecular breast imaging (MBI) using a dedicated gamma camera. ACR website. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MBI.pdf?la=en; 2017. Accessed April 27, 2022.

308.     Sergieva S, Mihaylova I, Alexandrova E, Dimcheva M, Mansi L. SPECT-CT in Radiotherapy Planning, with Main Reference to Patients with Breast Cancer. Curr Radiopharm. 2015;8(1):9-18. doi: 10.2174/1874471008666150316221722. PMID: 25808957.

309.     Hunt KN, Conners AL, Samreen N, Rhodes DJ, Johnson MP, Hruska CB PPV of the Molecular Breast Imaging Lexicon AJR 2023; 220:40–49 doi.org/10.2214/AJR.21.27047

310.     Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1–133. https://doi.org/10.1089/thy.2015.0020.

311.     Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med 2008;49:1017–23. https://doi.org/10.2967/jnumed.107.047159.

312.     Hindorf C, Glatting G, Chiesa C, Lindén O, Flux G. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging 2010;37:1238–50. https://doi.org/10.1007/s00259-010-1422-4.

313.     Ruhlmann M, Sonnenschein W, Nagarajah J, Binse I, Herrmann K, Jentzen W. Pretherapeutic 124I dosimetry reliably predicts intratherapeutic blood kinetics of 131I in patients with differentiated thyroid carcinoma receiving high therapeutic activities. Nucl Med Commun 2018;39:457–64. https://doi.org/10.1097/MNM.0000000000000817.

314.     Freudenberg LS, Jentzen W, Stahl A, Bockisch A, Rosenbaum-Krumme SJ. Clinical applications of 124I-PET/CT in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2011;38 Suppl 1:S48-56. https://doi.org/10.1007/s00259-011-1773-5.

315.     Maxon HR, Smith HS. Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin North Am 1990;19:685–718.

316.     Maxon HR, Thomas SR, Hertzberg VS, Kereiakes JG, Chen I-W, Sperling MI, et al. Relation between Effective Radiation Dose and Outcome of Radioiodine Therapy for Thyroid Cancer. New England Journal of Medicine 1983;309:937–941. https://doi.org/10.1056/NEJM198310203091601.

317.     Johansson L, Mattsson S, Nosslin B, Leide-Svegborn S. Effective dose from radiopharmaceuticals. Eur J Nucl Med 1992;19:933–8. https://doi.org/10.1007/BF00175858.

318.     Johansson L, Mattson S, Nosslin B, Leide-Svegborn S. Effective dose from radiopharmaceuticals. Eur J Nucl Med 1993;20:570–570. https://doi.org/10.1007/BF00175174.

319.     Phan HTT, Jager PL, Paans AMJ, Plukker JTM, Sturkenboom MGG, Sluiter WJ, et al. The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2008;35:958–65. https://doi.org/10.1007/s00259-007-0660-6.

320.     Schlumberger M, Mancusi F, Baudin E, Pacini F. 131I therapy for elevated thyroglobulin levels. Thyroid 1997;7:273–6. https://doi.org/10.1089/thy.1997.7.273.

321.     Capoccetti F, Criscuoli B, Rossi G, Ferretti F, Manni C, Brianzoni E. The effectiveness of 124I PET/CT in patients with differentiated thyroid cancer. Q J Nucl Med Mol Imaging 2009;53:536–45.

322.     Ruhlmann M, Jentzen W, Ruhlmann V, Pettinato C, Rossi G, Binse I, et al. High Level of Agreement Between Pretherapeutic 124I PET and Intratherapeutic 131I Imaging in Detecting Iodine-Positive Thyroid Cancer Metastases. J Nucl Med 2016;57:1339–42. https://doi.org/10.2967/jnumed.115.169649.

323.     Piccardo A, Trimboli P, Foppiani L, Treglia G, Ferrarazzo G, Massollo M, et al. PET/CT in thyroid nodule and differentiated thyroid cancer patients. The evidence-based state of the art. Rev Endocr Metab Disord 2019;20:47–64. https://doi.org/10.1007/s11154-019-09491-2.

324.     Dietlein M, Dressler J, Farahati J, Grünwald F, Leisner B, Moser E, et al. [Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 2)]. Nuklearmedizin 2004;43:115–20. https://doi.org/10.1267/nukl04040115.

325.     EMADOC-628903358-248. https://www.ema.europa.eu/en/documents/orphan-designation/eu3202295-public-summary-opinion-orphan-designation-lys40nodaga-68ganh2-exendin-4-diagnosis-insulinoma_en.pdf.

326.     Prasad V, Sainz-Esteban A, Arsenic R, et al. Role of 68Ga somatostatin receptor PET/CT in the detection of endogenous hyperinsulinaemic focus: an explorative study. Eur J Nucl Med Mol Imaging. 2016;43:1593–1600.

327.     Christ, E.; Wild, D.; Ederer, S.; Béhé, M.; Nicolas, G.; Caplin, M.E.; Brändle, M.; Clerici, T.; Fischli, S.; Stettler, C.; et al. Glucagon[1]like peptide-1 receptor imaging for the localisation of insulinomas: A prospective multicentre imaging study. Lancet Diabetes Endocrinol. 2013, 1, 115–122

328.     Okabayashi, T.; Shima, Y.; Sumiyoshi, T.; Kozuki, A.; Ito, S.; Ogawa, Y.; Kobayashi, M.; Hanazaki, K. Diagnosis and management of insulinoma. World J. Gastroenterol. 2013, 19, 829–837.

329.      Sidrak MMA, De Feo MS, Corica F, Gorica J, Conte M, Filippi L, Evangelista L, De Vincentis G, Frantellizzi V. Role of Exendin-4 Functional Imaging in Diagnosis of Insulinoma: A Systematic Review. Life (Basel). 2023 Apr 11;13(4):989. doi: 10.3390/life13040989. PMID: 37109517; PMCID: PMC10142629.

330.     Service, F.J.; McMahon, M.M.; O’Brien, P.C.; Ballard, D.J. Functioning insulinoma–incidence, recurrence, and long-term survival of patients: A 60-year study. Mayo Clin. Proc. 1991, 66, 711–719.

331.     Zhu L, Xue H, Sun Z, et al. Prospective comparison of biphasic contrast-enhanced CT, volume perfusion CT, and 3 Tesla MRI with diffusion-weighted imaging for insulinoma detection. J Magn Reson Imaging. 2017;46:1648–1655.

332.     Antwi K, Fani M, Heye T, et al. Comparison of glucagon-like peptide-1 receptor (GLP-1R) PET/CT, SPECT/CT and 3T MRI for the localisation of occult insulino[1]mas: evaluation of diagnostic accuracy in a prospective crossover imaging study. Eur J Nucl Med Mol Imaging. 2018;45:2318–2327.

333.     Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuro[1]endocrine tumours: molecular basis for in vivo multireceptor tumour targeting. EurJ Nucl Med Mol Imaging. 2003;30:781–793.

334.     Boss M, Eriksson O, Mikkola K, Eek A, Brom M, Buitinga M, Brouwers AH, Velikyan I, Waser B, Kauhanen S, Solin O, Marciniak C, Eriksson B, Reubi JC, Aveline C, Wild D, Pattou F, Talbot JN, Hofland J, Sundin A, Nuutila P, Hermans J, Gotthardt M. Improved Localization of Insulinomas Using 68Ga-NODAGA-Exendin-4 PET/CT. J Nucl Med. 2024 Dec 3;65(12):1959-1964. doi: 10.2967/jnumed.124.268158. PMID: 39419553; PMCID: PMC11619583.

335.     Antwi K, Fani M, Heye T, Nicolas G, Rottenburger C, Kaul F, Merkle E, Zech CJ, Boll D, Vogt DR, Gloor B, Christ E, Wild D. Comparison of glucagon-like peptide-1 receptor (GLP-1R) PET/CT, SPECT/CT and 3T MRI for the localisation of occult insulinomas: evaluation of diagnostic accuracy in a prospective crossover imaging study. Eur J Nucl Med Mol Imaging. 2018 Dec;45(13):2318-2327. doi: 10.1007/s00259-018-4101-5. Epub 2018 Jul 28. PMID: 30054698.]

336.     Boss M, Buitinga M, Jansen TJP, Brom M, Visser EP, Gotthardt M. PET-Based Human Dosimetry of 68Ga-NODAGA-Exendin-4, a Tracer for β-Cell Imaging. J Nucl Med. 2020 Jan;61(1):112-116. doi: 10.2967/jnumed.119.228627. Epub 2019 Sep 13. PMID: 31519801; PMCID: PMC6954461.

337.     Antwi K, Hepprich M, Müller NA, Reubi JC, Fani M, Rottenburger C, Nicolas G, Kaul F, Christ ER, Wild D. Pitfalls in the Detection of Insulinomas With Glucagon-Like Peptide-1 Receptor Imaging. Clin Nucl Med. 2020 Sep;45(9):e386-e392. doi: 10.1097/RLU.0000000000003124. PMID: 32558709

338.     Gourni E,  Demmer O,  Schottelius M,  D'Alessandria C,  Schulz S,  Dijkgraaf I, et al. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. J Nucl Med. 2011;52:1803-10. doi: 10.2967/jnumed.111.098798.

339.     Borchert T,  Beitar L,  Langer LBN,  Polyak A,  Wester HJ,  Ross TL, et al. Dissecting the target leukocyte subpopulations of clinically relevant inflammation radiopharmaceuticals. J Nucl Cardiol. 2019. doi: 10.1007/s12350-019-01929-z.

340.     Domanska UM,  Kruizinga RC,  Nagengast WB,  Timmer-Bosscha H,  Huls G,  de Vries EG, et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer. 2013;49:219-30. doi: 10.1016/j.ejca.2012.05.005.

341.     Zamanian M,  Albano D,  Treglia G,  Rizzo A, Abedi I. The Clinical Role of CXCR4-Targeted PET on Lymphoproliferative Disorders: A Systematic Review. J Clin Med. 2024;13. doi: 10.3390/jcm13102945.

342.     Buck AK,  Haug A,  Dreher N,  Lambertini A,  Higuchi T,  Lapa C, et al. Imaging of C-X-C Motif Chemokine Receptor 4 Expression in 690 Patients with Solid or Hematologic Neoplasms Using (68)Ga-Pentixafor PET. J Nucl Med. 2022;63:1687-92. doi: 10.2967/jnumed.121.263693.

343.     Kaur H,  Kumar S,  Watts A,  Singh C,  Sachdeva MUS,  Sreedharanunni S, et al. 68Ga-Pentixafor PET/CT-Based Response Evaluation and its Prognostic Value in Multiple Myeloma: Comparison With IMWG and 18F-FDG-Based Response. Clin Nucl Med. 2025. doi: 10.1097/RLU.0000000000005731.

344.     Lapa C,  Schreder M,  Schirbel A,  Samnick S,  Kortum KM,  Herrmann K, et al. [(68)Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - Comparison to [(18)F]FDG and laboratory values. Theranostics. 2017;7:205-12. doi: 10.7150/thno.16576.

345.      Pan Q,  Cao X,  Luo Y,  Li J,  Feng J, Li F. Chemokine receptor-4 targeted PET/CT with (68)Ga-Pentixafor in assessment of newly diagnosed multiple myeloma: comparison to (18)F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2020;47:537-46. doi: 10.1007/s00259-019-04605-z.

346.     Mayerhoefer ME,  Raderer M,  Lamm W,  Pichler V,  Pfaff S,  Weber M, et al. CXCR4 PET imaging of mantle cell lymphoma using [(68)Ga]Pentixafor: comparison with [(18)F]FDG-PET. Theranostics. 2021;11:567-78. doi: 10.7150/thno.48620.

347.     Kosmala A,  Duell J,  Schneid S,  Serfling SE,  Higuchi T,  Weich A, et al. Chemokine receptor-targeted PET/CT provides superior diagnostic performance in newly diagnosed marginal zone lymphoma patients: a head-to-head comparison with [(18)F]FDG. Eur J Nucl Med Mol Imaging. 2024;51:749-55. doi: 10.1007/s00259-023-06489-6.

348.      Duell J,  Buck AK,  Hartrampf PE,  Schlotelburg W,  Schneid S,  Weich A, et al. Chemokine Receptor PET/CT Provides Relevant Staging and Management Changes in Marginal Zone Lymphoma. J Nucl Med. 2023;64:1889-94. doi: 10.2967/jnumed.123.266074.

349.     Duell J,  Krummenast F,  Schirbel A,  Klassen P,  Samnick S,  Rauert-Wunderlich H, et al. Improved Primary Staging of Marginal-Zone Lymphoma by Addition of CXCR4-Directed PET/CT. J Nucl Med. 2021;62:1415-21. doi: 10.2967/jnumed.120.257279.

350.     Pan Q,  Cao X,  Li J,  Li F, Luo Y. Different extramedullary disease shown in chemokine receptor 4 targeted PET/CT with [ 68 Ga]Ga-pentixafor in patients with Waldenstrom macroglobulinemia and smoldering disease. Nucl Med Commun. 2024;45:727-35. doi: 10.1097/MNM.0000000000001862.

351.     Luo Y,  Cao X,  Pan Q,  Li J,  Feng J, Li F. (68)Ga-pentixafor PET/CT for imaging of chemokine receptor-4 expression in Waldenstrom macroglobulinemia/lymphoplasmacytic lymphoma: comparison to (18)F-FDG PET/CT. J Nucl Med. 2019. doi: 10.2967/jnumed.119.226134.

352.     Mayerhoefer ME,  Jaeger U,  Staber P,  Raderer M,  Wadsak W,  Pfaff S, et al. [68Ga]Ga-Pentixafor PET/MRI for CXCR4 Imaging of Chronic Lymphocytic Leukemia: Preliminary Results. Invest Radiol. 2018;53:403-08. doi: 10.1097/RLI.0000000000000469.

353.     Albano D,  Dondi F,  Bertagna F, Treglia G. The Role of [(68)Ga]Ga-Pentixafor PET/CT or PET/MRI in Lymphoma: A Systematic Review. Cancers (Basel). 2022;14. doi: 10.3390/cancers14153814.

354.     Herhaus P,  Habringer S,  Philipp-Abbrederis K,  Vag T,  Gerngross C,  Schottelius M, et al. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia. Haematologica. 2016;101:932-40. doi: 10.3324/haematol.2016.142976.

355.     Habringer S,  Lapa C,  Herhaus P,  Schottelius M,  Istvanffy R,  Steiger K, et al. Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics. Theranostics. 2018;8:369-83. doi: 10.7150/thno.21397.

356.     Pan Q,  Luo Y,  Zhang Y,  Chang L,  Li J,  Cao X, et al. Preliminary evidence of imaging of chemokine receptor-4-targeted PET/CT with [(68)Ga]pentixafor in non-Hodgkin lymphoma: comparison to [(18)F]FDG. EJNMMI Res. 2020;10:89. doi: 10.1186/s13550-020-00681-7.

357.     Ding J,  Tong A,  Zhang Y,  Wen J,  Zhang H,  Hacker M, et al. Functional Characterization of Adrenocortical Masses in Nononcologic Patients Using (68)Ga-Pentixafor. J Nucl Med. 2022;63:368-75. doi: 10.2967/jnumed.121.261964.

358.     Pan Q,  Luo Y,  Cao X,  Li J, Li F. (68)Ga-Pentixafor PET/CT May Fail to Detect Recurrent Multiple Myeloma with Extramedullary Disease. Diagnostics (Basel). 2023;13. doi: 10.3390/diagnostics13050871.

359.     Schloetelburg W,  Hartrampf PE,  Kosmala A,  Serfling SE,  Dreher N,  Schirbel A, et al. Predictive value of C-X-C motif chemokine receptor 4-directed molecular imaging in patients with advanced adrenocortical carcinoma. Eur J Nucl Med Mol Imaging. 2024;51:3643-50. doi: 10.1007/s00259-024-06800-z.

360.     Shu Q,  Deng M,  Chen Y,  Liu N, Cai L. Imaging Aldosterone-Producing Adrenocortical Carcinoma With 68 Ga-Pentixafor PET/CT. Clin Nucl Med. 2022;47:e572-e73. doi: 10.1097/RLU.0000000000004202.

361.     Dadgar H,  Norouzbeigi N,  Assadi M,  Jafari E,  Al-Balooshi B,  Al-Ibraheem A, et al. A Prospective Evaluation of Chemokine Receptor-4 (CXCR4) Overexpression in High-grade Glioma Using (68)Ga-Pentixafor (Pars-Cixafor) PET/CT Imaging. Acad Radiol. 2025;32:2247-56. doi: 10.1016/j.acra.2024.11.064.

362.     Waheed A,  Singh B,  Watts A,  Kaur H,  Singh H,  Dhingra K, et al. 68 Ga-Pentixafor PET/CT for In Vivo Imaging of CXCR4 Receptors in Glioma Demonstrating a Potential for Response Assessment to Radiochemotherapy: Preliminary Results. Clin Nucl Med. 2024;49:e141-e48. doi: 10.1097/RLU.0000000000005073.

363.     Hadebe B,  Harry L,  Gabela L,  Masikane S,  Patel M,  Zwane S, et al. Chemokine Receptor-4 Targeted PET/CT Imaging with (68)Ga-Pentixafor in Head and Neck Cancer-A Comparison with (18)F-FDG and CXCR4 Immunohistochemistry. Diagnostics (Basel). 2024;14. doi: 10.3390/diagnostics14131375.

364.     Liu M,  Chen X,  Ding H,  Shu Q,  Zheng Y,  Chen Y, et al. Comparison of [(18)F]FDG and [(68) Ga]pentixafor PET/CT in Nasopharyngeal Carcinoma. Mol Imaging Biol. 2024;26:658-67. doi: 10.1007/s11307-024-01913-1.

365.     Zhi Y,  Werner RA,  Schirbel A,  Higuchi T,  Buck AK,  Kosmala A, et al. Diagnostic efficacy of C-X-C motif chemokine receptor 4-directed PET/CT in newly diagnosed head and neck squamous cell carcinoma - a head-to-head comparison with [(18)F]FDG. Am J Nucl Med Mol Imaging. 2023;13:208-16. PMID:38023816

366.     Hadebe B,  Harry L,  Gabela L,  Nxasana T,  Ndlovu N,  Pillay V, et al. Comparing (68)Ga-Pentixafor,(18)F-FDG PET/CT and Chemokine Receptor 4 Immunohistochemistry Staining in Breast Cancer: A Prospective Cross Sectional Study. Cancers (Basel). 2025;17. doi: 10.3390/cancers17050763.

367.     Watts A,  Singh B,  Basher R,  Singh H,  Bal A,  Kapoor R, et al. 68Ga-Pentixafor PET/CT demonstrating higher CXCR4 density in small cell lung carcinoma than in non-small cell variant. Eur J Nucl Med Mol Imaging. 2017;44:909-10. doi: 10.1007/s00259-017-3622-7.

368.     Watts A,  Singh B,  Singh H,  Bal A,  Kaur H,  Dhanota N, et al. [(68)Ga]Ga-Pentixafor PET/CT imaging for in vivo CXCR4 receptor mapping in different lung cancer histologic sub-types: correlation with quantitative receptors' density by immunochemistry techniques. Eur J Nucl Med Mol Imaging. 2023;50:1216-27. doi: 10.1007/s00259-022-06059-2.

369.     Ding J,  Li X,  Liu S,  Gao Y,  Zheng G,  Hacker M, et al. Clinical Value of (68)Ga-Pentixafor PET/CT in Subtype Diagnosis of Primary Aldosteronism Patients with Adrenal Micronodules. J Nucl Med. 2024;65:117-24. doi: 10.2967/jnumed.123.266061.

370.     Yin X,  Ai K,  Luo J,  Liu W,  Ma X,  Zhou L, et al. A comparison of the performance of (68)Ga-Pentixafor PET/CT versus adrenal vein sampling for subtype diagnosis in primary aldosteronism. Front Endocrinol (Lausanne). 2024;15:1291775. doi: 10.3389/fendo.2024.1291775.

371.     Zheng Y,  Long T,  Peng N,  Zhen M,  Ye Q,  Zhang Z, et al. The Value of Targeting CXCR4 With 68Ga-Pentixafor PET/CT for Subtyping Primary Aldosteronism. J Clin Endocrinol Metab. 2023;109:171-82. doi: 10.1210/clinem/dgad421.

372.     Kircher M,  Tran-Gia J,  Kemmer L,  Zhang X,  Schirbel A,  Werner RA, et al. Imaging Inflammation in Atherosclerosis with CXCR4-directed (68)Ga-Pentixafor PET/CT - Correlation with (18)F-FDG PET/CT. J Nucl Med. 2019. doi: 10.2967/jnumed.119.234484.

373.     Wang M,  Zhang J,  Ma J,  Liu L,  Wang J, Zhang C. Imaging findings and clinical relevance of (68)Ga-Pentixafor PET in atherosclerosis: a systematic review. BMC Med Imaging. 2023;23:166. doi: 10.1186/s12880-023-01134-y.

374.     Weiberg D,  Thackeray JT,  Daum G,  Sohns JM,  Kropf S,  Wester HJ, et al. Clinical Molecular Imaging of Chemokine Receptor CXCR4 Expression in Atherosclerotic Plaque Using (68)Ga-Pentixafor PET: Correlation with Cardiovascular Risk Factors and Calcified Plaque Burden. J Nucl Med. 2018;59:266-72. doi: 10.2967/jnumed.117.196485.

375.     Derlin T,  Sedding DG,  Dutzmann J,  Haghikia A,  Konig T,  Napp LC, et al. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [(68)Ga]pentixafor PET/CT. Eur J Nucl Med Mol Imaging. 2018;45:1934-44. doi: 10.1007/s00259-018-4076-2.

376.     Reiter T,  Kircher M,  Schirbel A,  Werner RA,  Kropf S,  Ertl G, et al. Imaging of C-X-C Motif Chemokine Receptor CXCR4 Expression After Myocardial Infarction With [(68)Ga]Pentixafor-PET/CT in Correlation With Cardiac MRI. JACC Cardiovasc Imaging. 2018;11:1541-43. doi: 10.1016/j.jcmg.2018.01.001.

377.     Thackeray JT,  Derlin T,  Haghikia A,  Napp LC,  Wang Y,  Ross TL, et al. Molecular Imaging of the Chemokine Receptor CXCR4 After Acute Myocardial Infarction. JACC Cardiovasc Imaging. 2015;8:1417-26. doi: 10.1016/j.jcmg.2015.09.008.

378.     Derlin T,  Jaeger B,  Jonigk D,  Apel RM,  Freise J,  Shin HO, et al. Clinical Molecular Imaging of Pulmonary CXCR4 Expression to Predict Outcome of Pirfenidone Treatment in Idiopathic Pulmonary Fibrosis. Chest. 2021;159:1094-106. doi: 10.1016/j.chest.2020.08.2043.

379.     Bouter C,  Meller B,  Sahlmann CO,  Staab W,  Wester HJ,  Kropf S, et al. (68)Ga-Pentixafor PET/CT Imaging of Chemokine Receptor CXCR4 in Chronic Infection of the Bone: First Insights. J Nucl Med. 2018;59:320-26. doi: 10.2967/jnumed.117.193854.

380.     Derlin T,  Gueler F,  Brasen JH,  Schmitz J,  Hartung D,  Herrmann TR, et al. Integrating MRI and Chemokine Receptor CXCR4-Targeted PET for Detection of Leukocyte Infiltration in Complicated Urinary Tract Infections After Kidney Transplantation. J Nucl Med. 2017;58:1831-37. doi: 10.2967/jnumed.117.193037.

381.     Herrmann K,  Lapa C,  Wester HJ,  Schottelius M,  Schiepers C,  Eberlein U, et al. Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J Nucl Med. 2015;56:410-6. doi: 10.2967/jnumed.114.151647.

382.     45.   Chen Z,  Yang A,  Zhang J,  Chen A,  Zhang Y,  Huang C, et al. CXCR4-Directed PET/CT with [(68)Ga]Pentixafor in Central Nervous System Lymphoma: A Comparison with [(18)F]FDG PET/CT. Mol Imaging Biol. 2022;24:416-24. doi: 10.1007/s11307-021-01664-3.

383.     Herhaus P,  Lipkova J,  Lammer F,  Yakushev I,  Vag T,  Slotta-Huspenina J, et al. CXCR4-Targeted PET Imaging of Central Nervous System B-Cell Lymphoma. J Nucl Med. 2020;61:1765-71. doi: 10.2967/jnumed.120.241703.

384.     Starzer AM,  Berghoff AS,  Traub-Weidinger T,  Haug AR,  Widhalm G,  Hacker M, et al. Assessment of Central Nervous System Lymphoma Based on CXCR4 Expression In Vivo Using 68Ga-Pentixafor PET/MRI. Clin Nucl Med. 2021;46:16-20. doi: 10.1097/RLU.0000000000003404.

385.     Bluemel C,  Hahner S,  Heinze B,  Fassnacht M,  Kroiss M,  Bley TA, et al. Investigating the Chemokine Receptor 4 as Potential Theranostic Target in Adrenocortical Cancer Patients. Clin Nucl Med. 2017;42:e29-e34. doi: 10.1097/RLU.0000000000001435.

386.      Jacobs SM,  Wesseling P,  de Keizer B,  Tolboom N,  Ververs FFT,  Krijger GC, et al. CXCR4 expression in glioblastoma tissue and the potential for PET imaging and treatment with [(68)Ga]Ga-Pentixafor /[(177)Lu]Lu-Pentixather. Eur J Nucl Med Mol Imaging. 2022;49:481-91. doi: 10.1007/s00259-021-05196-4.

387.     Dobersalske C,  Rauschenbach L,  Hua Y,  Berliner C,  Steinbach A,  Gruneboom A, et al. Cranioencephalic functional lymphoid units in glioblastoma. Nat Med. 2024;30:2947-56. doi: 10.1038/s41591-024-03152-x.

388.     Wu P,  Xu L,  Wang Q,  Ma X,  Wang X,  Wang H, et al. Left Ventricular Remodelling Associated with the Transient Elevated [(68)Ga]Ga-Pentixafor Activity in the Remote Myocardium Following Acute Myocardial Infarction. Mol Imaging Biol. 2024;26:693-703. doi: 10.1007/s11307-024-01912-2.

389.     Doring Y,  Noels H,  van der Vorst E, Weber C. Seeing is repairing: how imaging-based timely interference with CXCR4 could improve repair after myocardial infarction. Eur Heart J. 2020;41:3576-78. doi: 10.1093/eurheartj/ehaa625.

390.     Werner RA,  Hess A,  Koenig T,  Diekmann J,  Derlin T,  Melk A, et al. Molecular imaging of inflammation crosstalk along the cardio-renal axis following acute myocardial infarction. Theranostics. 2021;11:7984-94. doi: 10.7150/thno.61423.

391.     Vag T,  Gerngross C,  Herhaus P,  Eiber M,  Philipp-Abbrederis K,  Graner FP, et al. First Experience with Chemokine Receptor CXCR4-Targeted PET Imaging of Patients with Solid Cancers. J Nucl Med. 2016;57:741-6. doi: 10.2967/jnumed.115.161034.

392.     Werner RA,  Kircher S,  Higuchi T,  Kircher M,  Schirbel A,  Wester HJ, et al. CXCR4-Directed Imaging in Solid Tumors. Front Oncol. 2019;9:770. doi: 10.3389/fonc.2019.00770.

393.     Lapa C,  Hanscheid H,  Kircher M,  Schirbel A,  Wunderlich G,  Werner RA, et al. Feasibility of CXCR4-Directed Radioligand Therapy in Advanced Diffuse Large B-Cell Lymphoma. J Nucl Med. 2019;60:60-64. doi: 10.2967/jnumed.118.210997.

394.     Lapa C,  Luckerath K,  Kircher S,  Hanscheid H,  Grigoleit GU,  Rosenwald A, et al. Potential influence of concomitant chemotherapy on CXCR4 expression in receptor directed endoradiotherapy. Br J Haematol. 2019;184:440-43. doi: 10.1111/bjh.15096.

395.     Bogelein A,  Stolzenburg A,  Eiring P,  Luckerath K,  Munawar U,  Werner R, et al. CXCR4 expression of multiple myeloma as a dynamic process: influence of therapeutic agents. Leuk Lymphoma. 2022;63:2393-402. doi: 10.1080/10428194.2022.2074986.

396.     Martin S,  Viertl D,  Janz A,  Habringer S,  Keller U, Schottelius M. Influence of corticosteroid treatment on CXCR4 expression in DLBCL. EJNMMI Res. 2023;13:40. doi: 10.1186/s13550-023-00993-4.

397.     Gennari A, Brain E, De Censi A, Nanni O, Wuerstlein R, Frassoldati A, Cortes J, Rossi V, Palleschi M, Alberini JL, Matteucci F, Piccardo A, Sacchetti G, Ilhan H, D'Avanzo F, Ruffilli B, Nardin S, Monti M, Puntoni M, Fontana V, Boni L, Harbeck N; ET-FES Collaborative Group. Early prediction of endocrine responsiveness in ER+/HER2-negative metastatic breast cancer (MBC): pilot study with 18F-fluoroestradiol (18F-FES) CT/PET. Ann Oncol. 2024 Jun;35(6):549-558. doi: 10.1016/j.annonc.2024.02.007. Epub 2024 Feb 28. PMID: 38423389.

398.     Piccardo A, Fiz F, Treglia G, Bottoni G, Trimboli P. Head-to-Head Comparison between 18F-FES PET/CT and 18F-FDG PET/CT in Oestrogen Receptor-Positive Breast Cancer: A Systematic Review and Meta-Analysis. J Clin Med. 2022 Mar 30;11(7):1919. doi: 10.3390/jcm11071919. PMID: 35407526; PMCID: PMC8999922.

399.     Ulaner GA, Jhaveri K, Chandarlapaty S, Hatzoglou V, Riedl CC, Lewis JS, Mauguen A. Head-to-Head Evaluation of 18F-FES and 18F-FDG PET/CT in Metastatic Invasive Lobular Breast Cancer. J Nucl Med. 2021 Mar;62(3):326-331. doi: 10.2967/jnumed.120.247882. Epub 2020 Jul 17. PMID: 32680923; PMCID: PMC8049349.

400.     Venema CM, de Vries EFJ, van der Veen SJ, Dorrius MD, van Kruchten M, Schröder CP, Hospers GAP, Glaudemans AWJM. Enhanced pulmonary uptake on 18F-FES-PET/CT scans after irradiation of the thoracic area: related to fibrosis? EJNMMI Res. 2019 Aug 23;9(1):82. doi: 10.1186/s13550-019-0549-y. PMID: 31444658; PMCID: PMC6708021.

401.     Langen KJ, Pauleit D, Coenen HH. 3-[(123)I]Iodo-alpha-methyl-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2002 Aug;29(6):625-31. 10.1016/s0969-8051(02)00328-1

402.     Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, la Fougère C, Langen KJ, Lopci E, Lowe V, McConathy J, Quick HH, Sattler B, Schuster DM, Tonn JC, Weller M. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019 Mar;46(3):540-557.  10.1007/s00259-018-4207-9

403.     Galldiks, N.; Lohmann, P.; Fink, G.R.; Langen, K.-J. Amino Acid PET in Neurooncology. J. Nucl. Med. 2023, 64, 693–700.10.2967/jnumed.122.264859

404.     Dunet V, Pomoni A, Hottinger A, Nicod-Lalonde M, Prior JO. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro Oncol. 2016 Mar;18(3):426-34. 10.1093/neuonc/nov148

405.     Pöpperl, G.; Kreth, F.W.; Mehrkens, J.H.; Herms, J.; Seelos, K.; Koch, W.; Gildehaus, F.J.; Kretzschmar, H.A.; Tonn, J.C.; Tatsch, K. FET PET for the evaluation of untreated gliomas: Correlation of FET uptake and uptake kinetics with tumour grading. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1933–1942 10.1007/s00259-007-0534-y

406.     Brendle C, Maier C, Bender B, Schittenhelm J, Paulsen F, Renovanz M, Roder C, Castaneda-Vega S, Tabatabai G, Ernemann U, Fougère C. Impact of 18F-FET PET/MRI on Clinical Management of Brain Tumor Patients. J Nucl Med. 2022 Apr;63(4):522-527.10.2967/jnumed.121.262051

407.     Lassmann M, Biassoni L, Monsieurs M, Franzius C, Jacobs F, EANM Dosimetry and Paediatrics Committees. The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging. 2007;34: 796–8.10.1007/s00259-007-0370-0

408.     Pauleit D, Floeth F, Herzog H, Hamacher K, Tellmann L, Müller HW, Coenen HH, Langen KJ. Whole-body distribution and dosimetry of O-(2-[18F]fluoroethyl)-L-tyrosine. Eur J Nucl Med Mol Imaging. 2003 Apr;30(4):519-24.10.1007/s00259-003-1118-0

409.     Hutterer, M.; Nowosielski, M.; Putzer, D.; Jansen, N.L.; Seiz, M.; Schocke, M.; McCoy, M.; Göbel, G.; la Fougère, C.; Virgolini, I.J.;et al. [18F]-fluoro-ethyl-l-tyrosine PET: A valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol. 2013, 15, 341–351.10.1093/neuonc/nos300

410.     Albert NL, Galldiks N, Ellingson BM, van den Bent MJ, Chang SM, Cicone F, de Groot J, Koh ES, Law I, Le Rhun E, Mair MJ, Minniti G, Rudà R, Scott AM, Short SC, Smits M, Suchorska B, Tolboom N, Traub-Weidinger T, Tonn JC, Verger A, Weller M, Wen PY, Preusser M. PET-based response assessment criteria for diffuse gliomas (PET RANO 1.0): a report of the RANO group. Lancet Oncol. 2024 Jan;25(1):10.1016/S1470-2045(23)00525-9

411.     Anders Josefsson, Robert F Hobbs, Sagar Ranka, Bryan C Schwarz, Donika Plyku, Jose Willegaignon de Amorim de Carvalho, Carlos Alberto Buchpiguel, Marcelo Tatit Sapienza, Wesley E Bolch and George Sgouros Comparative Dosimetry for 68Ga-DOTATATE: Impact of using Updated ICRP phantoms, S values and Tissue Weighting Factors Journal of Nuclear Medicine February 2018, jnumed.117.203893; DOI: https://doi.org/10.2967/jnumed.117.203893

412.     Dickson J, Eberlein U, Lassmann M. The effect of modern PET technology and techniques on the EANM paediatric dosage card. European Journal of Nuclear Medicine and Molecular Imaging. 2022;49(6):1964-1969. DOI: 10.1007/s00259-021-05635-2.

413.     Tokgöz S, Boss M, Prasad S, et al . Protocol for clinical GLP-1 receptor PET/CT imaging with [68Ga]Ga-NODAGA-exendin-4. Methods Mol Biol. 2023;2592:143–153

414.     Quinton J Keigley 1, Amy M Fowler 1,2,3, Sophia R O’Brien 4, Farrokh Dehdashti 5 Molecular Imaging of Steroid Receptors in Breast Cancer Cancer J. 2024 May-Jun;30(3):142–152. doi: 10.1097/PPO.0000000000000715

415.     Lanell M Peterson 1, Brenda F Kurland 2,3, Erin K Schubert 1,4, Jeanne M Link 5, VK Gadi 2,6, Jennifer M Specht 2,6, Janet F Eary 5, Peggy Porter 2, Lalitha K Shankar 7, David A Mankoff 1,4, Hannah M Linden 2,6 A Phase 2 Study of 16α-[18F]-fluoro-17β-estradiol Positron Emission Tomography (FES-PET) as a Marker of Hormone Sensitivity in Metastatic Breast Cancer (MBC) Mol Imaging Biol. 2013 Oct 30;16(3):431–440. doi: 10.1007/s11307-013-0699-7

416.     Mankoff DA, Peterson LM, Tewson TJ, Link JM, Krohn KA. [^18F]Fluoroestradiol radiation dosimetry in human PET. Journal of Nuclear Medicine. 2001;42(4):679-684.